检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]陆军工程大学指挥控制工程学院,江苏南京210007 [2]陆军工程大学通信工程学院,江苏南京210007
出 处:《信息记录材料》2023年第4期240-242,248,共4页Information Recording Materials
摘 要:语音激活检测(voice activity detection,VAD)是语音信号处理中的一个重要任务,旨在识别出语音信号中的语音段和非语音段。本文将通过实验分析和比较几种目前主流的VAD算法,包括基于多特征流(multiple feature streams,MFS),基于长短时记忆网络(longshort-termmemory,LSTM),基于集成深度神经网络(deep nueral network,DNN),基于自适应上下文注意力机制(adaptive context attention model,ACAM)的方法。综合来看,MFS模型简单、易于部署。当检测目标为含噪声时应尽可能采用深度模型,计算资源充足时可以采用DNN模型,反之则可以采用ACAM模型,它在损失了很少的精度下,将参数数目大幅压缩。
关 键 词:语音激活检测 长短时记忆网络 集成深度神经网络 注意力机制
分 类 号:TP279[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.125.13