检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiaoting Zhang Tyler Arbour Daijun Zhang Shiqiang Wei Korneel Rabaey
机构地区:[1]College of Resources and Environment,Southwest University,Chongqing,400715,China [2]Center for Microbial Ecology and Technology(CMET),Ghent University,Coupure Links 653,9000,Ghent,Belgium [3]State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,Chongqing,400044,China [4]Center for Advanced Process Technology for Urban Resource Recovery(CAPTURE),Frieda Saeysstraat 1,9052,Ghent,Belgium
出 处:《Environmental Science and Ecotechnology》2023年第1期86-95,共10页环境科学与生态技术(英文)
基 金:supported by the National Natural Science Foundation of China(No.42107242 and 51974039);Chongqing Special Support Fund for Post Doctor;supported by a Competitive Research Grant from the Office of Sponsored Research(No.OSR-2016-CRG5-2985)of King Abdullah University of Science and Technology.
摘 要:Microbial electrosynthesis(MES)enables the bioproduction of multicarbon compounds from CO_(2)using electricity as the driver.Although high salinity can improve the energetic performance of bioelectrochemical systems,acetogenic processes under elevated salinity are poorly known.Here MES under 35e60 g L^(-1)salinity was evaluated.Acetate production in two-chamber MES systems at 35 g L^(-1)salinity(seawater composition)gradually decreased within 60 days,both under-1.2 V cathode potential(vs.Ag/AgCl)and^(-1).56 A m^(-2)reductive current.Carbonate precipitation on cathodes(mostly CaCO3)likely declined the production through inhibiting CO_(2)supply,the direct electrode contact for acetogens and H2 production.Upon decreasing Ca2t and Mg2t levels in three-chamber reactors,acetate was stably produced over 137 days along with a low cathode apparent resistance at 1.9±0.6 mU m^(2)and an average production rate at 3.80±0.21 g m^(-2)d^(-1).Increasing the salinity step-wise from 35 to 60 g L^(-1)gave the most efficient acetate production at 40 g L^(-1)salinity with average rates of acetate production and CO_(2)consumption at 4.56±3.09 and 7.02±4.75 g m^(-2)d^(-1),respectively.The instantaneous coulombic efficiency for VFA averaged 55.1±31.4%.Acetate production dropped at higher salinity likely due to the inhibited CO_(2)dissolution and acetogenic metabolism.Acetobacterium up to 78%was enriched on cathodes as the main acetogen at 35 g L^(-1).Under high-salinity selection,96.5%Acetobacterium dominated on the cathode along with 34.0%Sphaerochaeta in catholyte.This research provides a first proof of concept that MES starting from CO_(2)reduction can be achieved at elevated salinity.
关 键 词:Carbon capture and utilization High salinity Carbonate precipitates ACETOGENESIS Marine bacteria
分 类 号:X701[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.126.147