Numerical Stability Analysis for a Stationary and Translating Droplet at Extremely Low Viscosity Values Using the Lattice Boltzmann Method Color-GradientMulti-Component Model with Central Moments Formulation  

在线阅读下载全文

作  者:Karun P.N.Datadien Gianluca Di Staso Federico Toschi 

机构地区:[1]Department of Applied Physics and Science Education,Eindhoven University of Technology,5600MB Eindhoven,Netherlands [2]FLOW Matters Consultancy B.V.,5612AE,Eindhoven,The Netherlands [3]Istituto per le Applicazioni del Calcolo,Consiglio Nazionale delle Ricerche,00185 Rome,Italy

出  处:《Communications in Computational Physics》2023年第1期330-348,共19页计算物理通讯(英文)

基  金:the Netherlands Organization for Scientific Research(NWO)research project High Tech Systems and Materials(HTSM),with project number 13912.

摘  要:Multicomponent models based on the Lattice Boltzmann Method(LBM)have clear advantages with respect to other approaches,such as good parallel performances and scalability and the automatic resolution of breakup and coalescence events.Multicomponent flow simulations are useful for a wide range of applications,yet many multicomponent models for LBMare limited in their numerical stability and therefore do not allow exploration of physically relevant low viscosity regimes.Here we performa quantitative study and validations,varying parameters such as viscosity,droplet radius,domain size and acceleration for stationary and translating droplet simulations for the color-gradientmethod with centralmoments(CG-CM)formulation,as this method promises increased numerical stability with respect to the non-CMformulation.We focus on numerical stability and on the effect of decreasing grid-spacing,i.e.increasing resolution,in the extremely low viscosity regime for stationary droplet simulations.The effects of small-and large-scale anisotropy,due to grid-spacing and domain-size,respectively,are investigated for a stationary droplet.The effects on numerical stability of applying a uniform acceleration in one direction on the domain,i.e.on both the droplet and the ambient,is explored into the low viscosity regime,to probe the numerical stability of the method under dynamical conditions.

关 键 词:Lattice Boltzmann method multicomponent flow numerical stability low viscosity 

分 类 号:O35[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象