检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mengmeng Zhang Changhua Wang Yueyun Wang Songmei Li Xintong Zhang Yichun Liu
出 处:《Nano Research》2023年第2期2142-2151,共10页纳米研究(英文版)
基 金:supported by the Natural Science Foundation of China(Nos.91833303,52273236,and 51872044);the 111 Project(No.B13013);Jilin Province Science and Technology Development Project(No.20220201073GX).
摘 要:Photothermal CO_(2)reduction with H2O,integrating advantages of photocatalysis driven H2O splitting and thermal catalysis promoted CO_(2)reduction,has drawn sharply increasing attention in artificial synthesis of solar fuels.The photothermal effect of metal nanoparticles facilities CO_(2)hydrogenation and activation of lattice oxygen in oxide photocatalyst promotes H2O oxidation,which is essentially considered for highly efficient photothermal catalysis.However,the large thermal conductivity of most metal nanoparticles induces inevitable heat dissipation,restricting the increase of catalyst temperature.In this work,to minimize the heat dissipation,we employ bismuth nanoparticles as photothermal unit,which is of the lowest thermal conductivity in the metal family.Meanwhile,we adopt bismuth doped NaTaO_(3)as photocatalytic unit because of the bismuth doping induced activation of lattice oxygen.The bismuth nanoparticles are assembled with bismuth doped NaTaO_(3)through one-step tunable transformation from Bi4TaO8Cl.Benefiting from the photothermal effect,thermal insulation caused by bismuth metal,and lattice oxygen activation by bismuth doping,the NaTaO_(3):Bi hybrid exhibits high photothermal catalytic performance.The yield of CO over NaTaO_(3):Bi hybrid at 413 K via photothermal catalysis is 141 times higher than that room temperature photocatalysis.Further,ultraviolet(UV)light irradiation leads to 89.2%selectivity of CO and visible light irradiation leads to 97.5%selectivity of CH4.This work may broaden the photocatalytic application of ABO_(3)perovskite and provides a novel strategy for the development of photothermal catalysts for artificial photosynthesis.
关 键 词:CO_(2)reduction photothermal catalytic NaTaO_(3) BISMUTH high selectivity
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.10.159