基于差分进化算法的异构型分布式阵列优化  

Heterogeneous distributed array optimization based on differential evolution algorithm

在线阅读下载全文

作  者:付思达 徐慧辉 蒋明 王铁丹[1] 宁帅宇 Fu Sida;Xu Huihui;Jiang Ming;Wang Tiedan;Ning Shuaiyu(No.8511 Research Institute of CASIC,Nanjing 210007,Jiangsu,China;Military representative bureau of ASD,Nanjing 210028,Jiangsu,China;State Grid.,LTD,Hengyang 421001,Hunan,China)

机构地区:[1]中国航天科工集团8511研究所,江苏南京210007 [2]航天系统部装备部军事代表局,江苏南京210028 [3]国家电网湖南省电力有限公司,湖南衡阳421001

出  处:《航天电子对抗》2023年第2期32-37,41,共7页Aerospace Electronic Warfare

摘  要:分布式阵列在突破了传统布阵环境限制的同时,还具有较高的增益,使其在实际工程中获得了广泛的应用。针对分布式阵列方向图存在较高的旁瓣问题,结合阵列性能约束和阵列位置约束,建立二维异构型分布式阵列优化模型,通过差分进化算法对子阵分布位置进行优化。并从变异策略、选择策略和控制参数三个方面对传统的差分进化算法进行改进。仿真分析结果表明,该方法能够有效抑制分布式阵列的峰值旁瓣电平,相比传统的差分进化算法,该算法全局收敛能力更强、收敛速度更快。Distributed array not only breaks through the limitation of traditional array environment,but also has high gain and angular resolution,which makes it widely used in practical engineering.A two-dimensional het⁃erogeneous distributed array optimization model is established to solve the problem of high sidelobe in the direc⁃tion graph of distributed array,combining the constraints of array performance and array position,and the differ⁃ential evolution algorithm is used to optimize the distribution position of distributed array.The traditional differen⁃tial evolution algorithm is improved from three aspects:variation strategy,selection strategy and control parame⁃ters.The simulation results show that the proposed method can effectively suppress the peak sidelobe level of the distributed array.Compared with the traditional differential evolution algorithm,the proposed algorithm has stron⁃ger global convergence and faster convergence.

关 键 词:异构型分布式阵列 差分进化算法 高旁瓣抑制 

分 类 号:TN820.15[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象