基于L_(1/2)范数的扇束X射线荧光CT重建  被引量:1

Reconstruction of Fan Beam X-Ray Fluorescence Computed Tomography Based on L_(1/2)-Norm

在线阅读下载全文

作  者:杨双 蒋上海 胡新宇[1] 罗彬彬[1] 赵明富[1] 汤斌[1] 龙邹荣 石胜辉[1] 邹雪[1] 周密 Yang Shuang;Jiang Shanghai;Hu Xinyu;Luo Binbin;Zhao Mingfu;Tang Bin;Long Zourong;Shi Shenghui;Zou Xue;Zhou Mi(Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection,Chongqing University of Technology,Chongqing 400054,China;College of Science,Chongqing University of Technology,Chongqing 400054,China)

机构地区:[1]重庆理工大学光纤传感与光电检测重庆市重点实验室,重庆400054 [2]重庆理工大学理学院,重庆400054

出  处:《激光与光电子学进展》2023年第6期105-111,共7页Laser & Optoelectronics Progress

基  金:重庆市自然科学基金面上项目(cstc2020jcyj-msxmX0362,cstc2020jcyj-msxmX0879)

摘  要:X射线荧光CT(XFCT)作为一种分子成像模式,存在着扫描时间长、辐射剂量大的问题,通常通过增大投影间隔、减少投影数量的稀疏投影方式来降低扫描时间与辐射剂量.因此,为在较少投影数量和较少迭代次数下提高重建图像质量,提出一种基于L_(1/2)范数的XFCT重建算法.数值模拟实验结果表明:在较少投影数量和较少迭代次数下,所提基于L_(1/2)范数的XFCT重建算法与传统Maximum Likelihood Expectation Maximization算法相比,其重建图像的均方根误差更小,全局图像质量索引更接近1,达到在较少投影数量和较少迭代次数下提高重建图像质量的目的.As a molecular imaging mode,Xray fluorescence computed tomography(XFCT)has the problems of long scanning times and large radiation doses.In general,the scanning time and radiation dose of XFCT are reduced by increasing the projection interval and reducing the number of projections.Therefore,to improve the quality of reconstructed images with few projections and iterations,an XFCT reconstruction algorithm based on the L_(1/2)-norm is proposed.The numerical simulation results show that compared with the traditional Maximum Likelihood Expectation Maximization algorithm,the proposed XFCT reconstruction algorithm has a smaller root mean square error and a global image quality index closer to 1 with fewer projections and iterations,achieving the goal of improving the quality of reconstructed images with few projections and iterations.

关 键 词:图像处理 X射线荧光CT 图像重建 数值模拟 稀疏投影 L_(1/2)范数 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象