检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱浩宸 张信明[1] Qiu Haochen;Zhang Xinming(School of Computer Science and Technology,University of Science and Technology of China,Hefei 230026,China)
机构地区:[1]中国科学技术大学计算机科学与技术学院,安徽合肥230026
出 处:《网络安全与数据治理》2023年第4期62-69,共8页CYBER SECURITY AND DATA GOVERNANCE
基 金:国家重点研发计划(2020YFB2103803)。
摘 要:联邦学习通过让用户使用本地数据训练模型来保护隐私,但现有的工作普遍忽略了真实场景下参与方的异质性。针对传统联邦学习难以避免与不恰当参与方共享模型的问题,提出一种联邦学习参与方选择方案。设计新的可撤销的密文策略属性基加密算法,在不泄露隐私的前提下对参与方实现高效的访问控制。对所提出的方案进行安全性的深入讨论,同时使用公开的数据集进行模拟实验,结果表明所提方案在提供可靠参与方选择应用的同时极大提升了模型的性能,能促进联邦学习在智慧城市等场景中的广泛落地。Federated learning protects privacy by enabling users to train models with local data,but existing works has generally ignored applicability in real-world scenarios.In view of the problem that traditional federated learning frameworks cannot avoid sharing models with inappropriate participants,an efficient federated learning participant selection scheme is proposed.A new ciphertext-policy attribute based encryption with attribute revocation is designed to achieve efficient access control for participants without disclosing privacy.The security of the proposed scheme is discussed in depth,and the simulation experiment is carried out with open datesets.The results show that the scheme greatly improves the performance of the model while providing reliable participant selection applications,which can promote the widespread implementation of federated learning in smart cities and other scenarios.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.8