检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wanrong Zan Yong Xu Jürgen Kurths
机构地区:[1]School of Mathematics,Northwest University,Xi’an,710127,China [2]Department of Applied Mathematics,Northwestern Polytechnical University,Xi’an,710129,China [3]MIIT key Laboratory of Dynamics and Control of Complex Systems,Northwestern Polytechnical University,Xi’an,710129,China [4]Potsdam Institute for Climate Impact Research,Potsdam,14412,Germany [5]Department of Physics,Humboldt University of Berlin,Berlin,12489,Germany
出 处:《Theoretical & Applied Mechanics Letters》2023年第2期98-112,共15页力学快报(英文版)
基 金:This work was supported by the Key International(Regional)Joint Research Program of the National Natural Science Foundation of China(No.12120101002).
摘 要:In this paper,the path integral solutions for a general n-dimensional stochastic differential equa-tions(SDEs)withα-stable Lévy noise are derived and verified.Firstly,the governing equations for the solutions of n-dimensional SDEs under the excitation ofα-stable Lévy noise are obtained through the characteristic function of stochastic processes.Then,the short-time transition probability density func-tion of the path integral solution is derived based on the Chapman-Kolmogorov-Smoluchowski(CKS)equation and the characteristic function,and its correctness is demonstrated by proving that it satis-fies the governing equation of the solution of the SDE,which is also called the Fokker-Planck-Kolmogorov equation.Besides,illustrative examples are numerically considered for highlighting the feasibility of the proposed path integral method,and the pertinent Monte Carlo solution is also calculated to show its correctness and effectiveness.
关 键 词:Path integral method α-stable Lévy noise Monte carlo method Fokker-Planck-Kolmogorov equation
分 类 号:O211.63[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7