Path integral solutions for n-dimensional stochastic differential equations underα-stable Lévy excitation  被引量:1

在线阅读下载全文

作  者:Wanrong Zan Yong Xu Jürgen Kurths 

机构地区:[1]School of Mathematics,Northwest University,Xi’an,710127,China [2]Department of Applied Mathematics,Northwestern Polytechnical University,Xi’an,710129,China [3]MIIT key Laboratory of Dynamics and Control of Complex Systems,Northwestern Polytechnical University,Xi’an,710129,China [4]Potsdam Institute for Climate Impact Research,Potsdam,14412,Germany [5]Department of Physics,Humboldt University of Berlin,Berlin,12489,Germany

出  处:《Theoretical & Applied Mechanics Letters》2023年第2期98-112,共15页力学快报(英文版)

基  金:This work was supported by the Key International(Regional)Joint Research Program of the National Natural Science Foundation of China(No.12120101002).

摘  要:In this paper,the path integral solutions for a general n-dimensional stochastic differential equa-tions(SDEs)withα-stable Lévy noise are derived and verified.Firstly,the governing equations for the solutions of n-dimensional SDEs under the excitation ofα-stable Lévy noise are obtained through the characteristic function of stochastic processes.Then,the short-time transition probability density func-tion of the path integral solution is derived based on the Chapman-Kolmogorov-Smoluchowski(CKS)equation and the characteristic function,and its correctness is demonstrated by proving that it satis-fies the governing equation of the solution of the SDE,which is also called the Fokker-Planck-Kolmogorov equation.Besides,illustrative examples are numerically considered for highlighting the feasibility of the proposed path integral method,and the pertinent Monte Carlo solution is also calculated to show its correctness and effectiveness.

关 键 词:Path integral method α-stable Lévy noise Monte carlo method Fokker-Planck-Kolmogorov equation 

分 类 号:O211.63[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象