检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钱政[1] 程淑玉[1] 夏红霞[2] QIAN Zheng;CHENG Shuyu;XIA Hongxia(College of Information Engineering,Anhui Vocational College of Electronics and Information Technology,Bengbu 233000,Anhui,China;College of Software Engineering,Anhui Vocational College of Electronics and Information Technology,Bengbu 233000,Anhui,China)
机构地区:[1]安徽电子信息职业技术学院信息工程学院,安徽蚌埠233000 [2]安徽电子信息职业技术学院软件工程学院,安徽蚌埠233000
出 处:《机械科学与技术》2023年第4期592-596,共5页Mechanical Science and Technology for Aerospace Engineering
基 金:安徽高校自然科学研究项目(KJ2021A1488);安徽省职业教育创新发展试验区建设项目(WJ-ZYPX-011)。
摘 要:针对多传感器监测场景中传感器突发故障导致监测模型失效的问题,本文提出了一种堆叠自编码器深度学习模型的自适应快速调整方法。根据传感器故障时采集数据的分布特点自适应调整原始数据集,采用调整后的数据集正向传播和监测误差反向传播微调模型更新模型的权重和偏置,实现监测模型自适应快速调整。以机械加工过程中刀具磨损状态监测为例,采用加州大学伯克利分校的BEST实验室提供的刀具数据集验证了自适应调整方法的有效性。结果表明,该方法可解决当传感器突发故障时,在实时监测不中断的情况下,自适应调整后的监测模型可以准确地对刀具状态进行监测。To solve the sensor fault leading to failure of monitoring model for multi-sensor monitoring scenarios,an adaptive fast adjustment method of stacked autoencoder(SAE)deep learning model is proposed in this paper.The original data set was adjusted adaptively according to the distribution characteris-tics of the data collected during sensor fault,the weight and bias of the model are updated by using the adjusted data set forward propagation and the monitoring error back propagation to fine-tune model,and the adaptive fast adjustment of the monitoring model was realized.Taking tool wear monitoring in machining as an example,the effectiveness of the proposed method was verified with the data set provided by the BEST lab at UC Berkeley.The results show that the adaptively adjusted monitoring model can accurately monitor the tool state under the condition that the real-time monitoring is not interrupted when the sensor breaks down suddenly.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.115.20