检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高奇 廖亮[1] 王竟宇 GAO Qi;LIAO Liang;WANG Jingyu
机构地区:[1]中原工学院电子信息学院,河南郑州450007
出 处:《信息技术与信息化》2023年第3期17-20,共4页Information Technology and Informatization
基 金:河南省科技厅“机器学习与图像分析”工作室项目(GZS2021012)的部分资助;科技部,战略发展类项目,有限维半单交换代数之上的广义矩阵理论及其在图像分析中应用的研究(G2021026018L)。
摘 要:传统算法奇异值分解(singular value decomposition,SVD)低秩近似在图像处理等领域有巨大的潜力,但其并没有有效的利用图像本身的自然结构信息。针对上述问题,提出有限维交换半单代数,在此基础上提出广义奇异值分解(tensorial singular value decomposition, TSVD),并对二阶图像进行邻域拓展策略,将原图像的每个像素替换为广义标量。广义线性插值奇异值分解(tensorial linear interpolation singular value decomposition, TSVD-L)对广义标量进行线性插值处理,拓展阶数后的广义标量构成广义矩阵。以此为基础,通过不同阶数和尺寸的策略,将TSVD-L与传统算法SVD进行低秩近似重建,比较峰值信噪比结果,实验数据表明,在有限维交换半单代数之上的广义线性插值奇异值分解算法性能明显优于经典奇异值分解算法,且随着阶数的提升,TSVD-L的峰值信噪比完全优于SVD的峰值信噪比。同时TSVD-L比TSVD有一定的优越性。
关 键 词:有限维交换半单代数 低秩近似 广义线性插值奇异值分解 线性插值
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7