一种近海水域磁异常信号检测方法  被引量:3

A Detection Method of Magnetic Anomaly Signal in Offshore Waters

在线阅读下载全文

作  者:杜德锋 陈帅 王磊[1] 孟凡凯[3] DU Defeng;CHEN Shuai;WANG Lei;MENG Fankai(91388^(th)Unit,The People’s Libration Army of China,Zhanjiang 524002,China;The 710 Research Institute,China State Shipbuilding Corporation Limited,Yichang 443003,China;Power Engineering College,Naval University of Engineering,Wuhan430033,China)

机构地区:[1]中国人民解放军91388部队,广东湛江524002 [2]中国船舶集团有限公司第七一〇研究所,湖北宜昌443003 [3]海军工程大学动力工程学院,湖北武汉430033

出  处:《水下无人系统学报》2023年第2期269-277,共9页Journal of Unmanned Undersea Systems

基  金:国家自然科学基金(11974429)。

摘  要:磁异常信号检测在近海防御领域应用前景广阔,实现远距离、长时间监测是目前亟待解决的问题。文中提出一种水下磁异常探测模型,引入小波域分析与正交基分解检测的方法,通过对磁异常信号特征与小波分解频率分析,提出一种自适应层数确定方法,再进行去噪正交基分解能量检测的自主处理流程。针对小波域去噪问题,在不同分解尺度下,提出独立使用不同收缩系数对细节系数进行处理,提高对高频噪声抑制效果。研究结果表明相对于传统小波去噪,文中方法信噪比提升约27%,误识别率降低39%。Magnetic anomaly signal detection has broad application prospects in offshore defense,which is an urgent problemfor realizing remote and long-term monitoring.In this paper,an underwater magnetic anomaly detection model is proposed,and wavelet domain analysis and orthogonal basis decomposition detection methods are introduced.Through the analysis ofmagnetic anomaly signal characteristics and wavelet decomposition frequency,adaptive layer determination method isproposed,and independent processing flow of denoising orthogonal basis decomposition energy detection was performed.Toaddress the problem of wavelet domain denoising under different decomposition scales,different shrinkage coefficients areused to independently deal with detail coefficients to improve the effect of high-frequency noise suppression.The results showthat compared with the traditional wavelet denoising,the signal-to-noise ratio of this method is improved by approximately27%,and the false recognition rate is reduced by 39%.

关 键 词:水域磁目标 磁异常探测 小波去噪 正交基检测 

分 类 号:TJ67[兵器科学与技术—武器系统与运用工程] U674.941[交通运输工程—船舶及航道工程] O441.4[交通运输工程—船舶与海洋工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象