检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林海飞 周捷[1] 金洪伟 李树刚 赵鹏翔[1,2] 刘时豪 LIN Haifei;ZHOU Jie;JIN Hongwei;LI Shugang;ZHAO Pengxiang;LIU Shihao(College of Safety Science and Engineering,Xi’an University of Science and Technology,Xi’an,Shaanxi 710054,China;Coal Industry Engineering Research Center for Western Mine Gas Intelligent Extraction,Xi’an University of Science and Technology,Xi’an,Shaanxi 710054,China)
机构地区:[1]西安科技大学安全科学与工程学院,陕西西安710054 [2]西安科技大学煤炭行业西部矿井瓦斯智能抽采工程研究中心,陕西西安710054
出 处:《采矿与安全工程学报》2023年第2期361-370,共10页Journal of Mining & Safety Engineering
基 金:国家自然科学基金重点项目(51734007);陕西省杰出青年项目(2020JC-48);新疆维吾尔自治区创新环境建设专项项目(PT201)。
摘 要:煤与瓦斯突出危险性预测可有效防止煤矿井下突出灾害事故。为进一步提高煤与瓦斯突出危险等级预测的科学性及准确性,构建了基于多算法和多元分析的煤与瓦斯突出动态预测模型。选择51组煤与瓦斯突出工程案例数据作为样本集,对样本数据进行空值填补、数据标准化等预处理,通过引入6种特征选择方法及6种有监督机器学习算法构建了42种煤与瓦斯突出危险等级预测模型。采用准确率、混淆矩阵、Kappa系数及F1值等指标对预测模型的性能进行验证与评估,筛选出精度及稳定度高的4种机器学习算法和3种特征参数组合,确定了8种最优分类模型,并对8组典型的煤与瓦斯突出事故案例进行等级预测。结果表明:8种最优分类预测模型准确率为0.667~0.961,Kappa系数为0.625~0.920,F1值为0.615~1;实际案例煤与瓦斯突出预测准确率为100%,突出等级预测准确率为87.5%。所构建的多参数、多算法、多组合、多判定指标的煤与瓦斯突出等级协同预测模型精度较高,且具有一定的普适性,可为煤与瓦斯突出危险等级预测提供一种新思路。Coal and gas outburst risk prediction is essential to effectively prevent underground coal and gas outburst disasters.In order to improve the scientificity and accuracy of coal and gas outburst risk level prediction,proposed a dynamic prediction model of coal and gas outburst based on multi-algorithm and multivariate analysis.The system selected 51 sets of coal and gas outburst engineering case data as the sample set.Null filling and data standardization were used for preprocessing of the sample data.The 42 prediction models of the coal and gas outburst risk level were built by introducing 6 feature selection methods and 6 supervised machine learning algorithms.The accuracy,confusion matrix,Kappa coefficient and F1 value were used to verify and evaluate the performance of the prediction mode. 8 optimalclassification models were determined. Finally,the classification model is used for the prediction of 8typical coal and gas outburst cases. The results show that the accuracy rate of the 8 optimal classificationprediction models is 0. 667-0. 961,the Kappa coefficient is 0. 625-0. 920,and the F1 value is 0. 615-1.The actual case of coal and gas outburst prediction accuracy rate is 100%,and the outburst grade predictionaccuracy rate is 87. 5%. The constructed multi-parameter,multi-algorithm,multi-combination,andmulti-identification index collaborative prediction system of coal and gas outburst level has high accuracyand a certain degree of universality,which can provide a new way for the prediction of the coal and gasoutburst risk level.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3