基于多智能体强化学习的多部件系统维修优化  

Maintenance optimization of multi-component system based on multi-agent reinforcement learning

在线阅读下载全文

作  者:周一帆[1] 郭凯 李帮诚 ZHOU Yifan;GUO Kai;LI Bangcheng(School of Mechanical Engineering,Southeast University,Nanjing 211189,China)

机构地区:[1]东南大学机械工程学院,江苏南京211189

出  处:《长沙理工大学学报(自然科学版)》2023年第2期27-34,共8页Journal of Changsha University of Science and Technology:Natural Science

基  金:国家自然科学基金资助项目(72071044)。

摘  要:【目的】研究多智能体强化学习算法用于多部件生产系统维修优化的有效性,及维修优化领域知识用于强化学习的可行性。【方法】将生产系统的维修决策建模为马尔可夫决策过程(Markov decision process,MDP),并采用一种基于奖励塑造的分布式Q学习(shaped reward distributed Q-learning,SR-DQL)算法对其进行求解。通过对智能体的设计和奖励塑造,把维修优化的领域知识应用于强化学习中。【结果】使用包含5个生产单元和4个缓冲库存的生产系统对本文所提出的SR-DQL算法进行验证。相较于Q学习算法,SRDQL算法能够提升6%的平均收益。此外,由该算法计算得到的平均收益也比由分布式Q学习算法和深度强化学习算法计算得到的大。【结论】多智能体强化学习能有效处理大规模生产系统的维修优化问题,添加奖励塑造可以提升算法性能,并得到更优的维修策略。[Purposes]This paper investigates the effectiveness of multi-agent reinforcement learning algorithms for maintenance optimization of multi-component production system.The feasibility of applying domain knowledge of maintenance optimization in reinforcement learning is also studied.[Methods]The maintenance decision making process of the production system was modeled as a Markov decision process(MDP),which was solved by a shaped reward distributed Q-learning(SR-DQL)algorithm.The domain knowledge of maintenance optimization was introduced into reinforcement learning by designing parameters of agents and reward shaping.[Findings]The proposed methods were validated using a production system with five production units and four inventory buffers.The proposed SR-DQL algorithm had a 6%ehancement of average revenuse comparing with the commonly used Q-learning.SR-DQL also outperformed distributed Qlearning and deep reinforcement learning algorithms.[Conclusions]The SR-DQL algorithm can effectively deal with the maintenance optimization problem of large-scale production systems,and reward shaping can improve the performance of the reinforcement learning algorithm.

关 键 词:多部件生产系统 奖励塑造 分布式Q学习 多智能体强化学习 深度强化学习 

分 类 号:TH17[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象