基于网络表征学习的软件系统演化分析  

Software system evolution analysis based on network representation learning

在线阅读下载全文

作  者:邓文涛 章梦怡 何鹏 曾张帆 李兵[2] DENG Wentao;ZHANG Mengyi;HE Peng;ZENG Zhangfan;LI Bing(School of Computer Science and Information Engineering,Hubei University,Wuhan 430062,Hubei,China;School of Computer Science,Wuhan University,Wuhan 430072,Hubei,China)

机构地区:[1]湖北大学计算机与信息工程学院,湖北武汉430062 [2]武汉大学计算机学院,湖北武汉430072

出  处:《山东大学学报(工学版)》2023年第2期77-86,共10页Journal of Shandong University(Engineering Science)

基  金:国家自然科学基金资助项目(61572371);国家重点研发计划(2017YFB1400602);湖北省技术创新重大专项(2018ACA13);湖北省教育厅青年人才项目(Q20171008)。

摘  要:从包、类和方法3个粒度构建软件元素的网络模型。利用经典的网络表征学习方法Node2vec学习节点特征,并从网络距离、增长特性、更新率、模块度等方面对3个开源软件系统进行演化分析。试验结果表明:3种粒度下的演化特性不尽相同,包粒度下的演化更加稳定且高效;相比先前研究,本研究方法得到的软件演化特性与Lehman定律更契合;当软件系统迭代累计到最大阈值时其体系架构将重新部署,此时软件系统的鲁棒性最差且易产生峭壁。This research constructed the network model of software elements from package,class,and function granularity.The classical network characterization learning method Node2vec was used to learn node features,and the evolution of three open source software systems was analyzed from the aspects of network distance,growth characteristics,update rate,and modularity.The experimental results showed that:the evolution characteristics of the three particle sizes were different,and the evolution of the package size was more stable and efficient;compared with previous studies,the software evolution characteristics obtained by this method were more consistent with Lehman's law;when the software system iteration accumulated to the maximum threshold,the architecture was redeployed.

关 键 词:软件系统 软件网络 网络嵌入 表征学习 软件演化 

分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象