EXPONENTIAL TIME DIFFERENCING-PADE FINITE ELEMENT METHOD FOR NONLINEAR CONVECTION-DIFFUSION-REACTION EQUATIONS WITH TIME CONSTANT DELAY  

在线阅读下载全文

作  者:Haishen Dai Qiumei Huang Cheng Wang 

机构地区:[1]School of Mathematics,Faculty of Science,Beijing University of Technology,Beijing 100124,China [2]Department of Mathematics,University of Massachusetts,North Dartmouth,MA 02747,USA

出  处:《Journal of Computational Mathematics》2023年第3期370-394,共25页计算数学(英文)

基  金:NSFC 11971047(Q.Huang)and NSF DMS-2012669(C.Wang).

摘  要:In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK is used for time integration of the corresponding equation.To overcome a well-known difficulty of numerical instability associated with the computation of the exponential operator,the Padéapproach is used for such an exponential operator approximation,which in turn leads to the corresponding ETD-Padéschemes.An unconditional L^(2) numerical stability is proved for the proposed numerical schemes,under a global Lipshitz continuity assumption.In addition,optimal rate error estimates are provided,which gives the convergence order of O(k^(3)+h^(r))(ETD3-Padé)or O(k^(4)+h^(r))(ETD4-Padé)in the L^(2)norm,respectively.Numerical experiments are presented to demonstrate the robustness of the proposed numerical schemes.

关 键 词:Nonlinear delayed convection diffusion reaction equations ETD-Pad´e scheme Lipshitz continuity L^(2)stability analysis Convergence analysis and error estimate 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象