检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Joohoon Kim Wonjoong Kim Dong Kyo Oh Hyunjung Kang Hongyoon Kim Trevon Badloe Seokwoo Kim Chanwoong Park Hojung Choi Heon Lee Junsuk Rho
机构地区:[1]Department of Mechanical Engineering,Pohang University of Science and Technology(POSTECH),Pohang 37673,Republic of Korea [2]Department of Materials Science and Engineering,Korea University,Seoul 02841,Republic of Korea [3]Department of Chemical Engineering,Pohang University of Science and Technology(POSTECH),Pohang 37673,Republic of Korea [4]POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics,Pohang 37673,Republic of Korea [5]NationallInstitute of Nanomaterials Technology(NINT),Pohang 37673,Republic of Korea
出 处:《Light(Science & Applications)》2023年第4期551-557,共7页光(科学与应用)(英文版)
基 金:supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO,a university R&D program funded by Samsung Electronics,and the National Research Foundation(NRF)grants(NRF-2022M3C1A3081312,NRF-2022M3H4A1A02074314,NRF-2021K1A3A1A17086079,NRF-2021K2A9A2A15000174,CAMM-2019M3A6B3030637,NRF-2019R1A5A8080290)funded by the Ministry of Science and ICT(MSIT)of the Korean government.
摘 要:A single-step printable platform for ultraviolet(UV)metasurfaces is introduced to overcome both the scarcity of low-loss UV materials and manufacturing limitations of high cost and low throughput.By dispersing zirconium dioxide(ZrO_(2))nanoparticles in a UV-curable resin,ZrO_(2)nanoparticle-embedded-resin(nano-PER)is developed as a printable material which has a high refractive index and low extinction coefficient from near-UV to deep-UV.In ZrO_(2)nano-PER,the UV-curable resin enables direct pattern transfer and ZrO_(2)nanoparticles increase the refractive index of the composite while maintaining a large bandgap.With this concept,UV metasurfaces can be fabricated in a single step by nanoimprint lithography.As a proof of concept,UV metaholograms operating in near-UV and deep-UV are experimentally demonstrated with vivid and clear holographic images.The proposed method enables repeat and rapid manufacturing of UV metasurfaces,and thus will bring UV metasurfaces more close to real life.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7