检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毕剑飞 李靖 吴克柳 高艳玲 陈掌星 冯东[1] 张晟庭 李相方 BI Jianfei;LI Jing;WU Keliu;CHEN Zhangxing;GAO Yanling;FENG Dong;ZHANG Shengting;LI Xiangfang(State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing City,102249,China;Department of Chemical and Petroleum Engineering,University of Calgary,Alberta,Calgary,T2N1N4,Canada)
机构地区:[1]中国石油大学(北京)油气资源与探测国家重点实验室,北京102249 [2]加拿大卡尔加里大学石油与化学工程系,阿尔伯塔卡尔加里T2N1N4
出 处:《油气地质与采收率》2023年第3期104-114,共11页Petroleum Geology and Recovery Efficiency
基 金:国家自然科学基金项目“页岩储层压裂液侵入/返排淵留机理及其对气井产能影响规律研究”(52104051)、“非常规储层纳米孔中水驱气动态润湿机理与传输特性”(52174041)和“页岩气有效储渗孔隙跨尺度耦合渗流及产出规律研究”(51874319);教育部启动基金项目“页岩储层气水两相赋存特征及流动机理研究”(2462021QNXZ002);国家博士后创新人才支持计划“页岩油藏注CO_(2)开发油-气-水多元共存体系复杂相变与流动机制研究”(BX20220350)。
摘 要:渗流代理模型的构建是油气藏模拟技术研究的前沿方向,而目前广泛使用的纯数据驱动渗流代理模型无理论支撑,对数据数量和质量的要求较高,很大程度上限制了渗流代理模型的发展。为此提出了数据驱动与物理驱动相融合的双驱动渗流代理模型,其在纯数据驱动渗流代理模型的基础上,融合油气渗流理论,模拟预测油气渗流过程。结果表明:相较于纯数据驱动渗流代理模型,即使训练数据极度稀疏,双驱动渗流代理模型仍具有较高的预测精度;通过在训练数据中加入不同等级的干扰噪声,验证了双驱动渗流代理模型的鲁棒性优于纯数据驱动渗流代理模型;通过迁移学习,将训练好的双驱动渗流代理模型应用到新的渗流场,实现了快速收敛并节省了计算资源。The building of flow surrogate models is the frontier of simulation technology research for oil and gas reservoirs.However,the currently widely used pure data-driven flow surogate models have no theoretical support and require a high data volume and data quality,which greatly limits the development of flow surrogate models.Therefore,this paper propos-es a flow surrogate model based on a data-driven and physics-driven method.On the basis of the pure data-driven flow sur-rogate model,it takes advantage of the flow theory to simulate and predict oil and gas flow processes.Firstly,the dual-driv-en flow surrogate model is compared with the pure data-driven model.The results show that the proposed model can still maintain high prediction accuracy even if the training data is extrermely sparse.Secondly,the robustness of the dual driven model is explored by adding different levels of noise interference to the training data,and it is verified that the proposed model outperforms the pure data driven flow surrogate model.Finally,the trained dual driven flow surrogate model is ap-plied to a new flow field through transfer leamning.The model can achieve rapid convergence and save computing resources.
关 键 词:油藏模拟 代理模型 渗流理论 噪声干扰 迁移学习
分 类 号:TE319[石油与天然气工程—油气田开发工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.135.50