Sparse RGB-D images create a real thing:A flexible voxel based 3D reconstruction pipeline for single object  

在线阅读下载全文

作  者:Fei Luo Yongqiong Zhu Yanping Fu Huajian Zhou Zezheng Chen Chunxia Xiao 

机构地区:[1]School of Computer Science,Wuhan University,Wuhan,430072,Hubei,China [2]School of Art,Wuhan Business University,Wuhan,430000,Hubei,China [3]School of Computer Science and Technology,Anhui University,Hefei,230601,Anhui,China

出  处:《Visual Informatics》2023年第1期66-76,共11页可视信息学(英文)

基  金:supported by the Key Technological Innovation Projects of Hubei Province,China(No.2018AAA062);the National Natural Science Foundation of China(No.61972298);the Ministry of Education of Humanities and Social Sciences Project,China(No.17YJC760124);the Scientific Research Project of Department of Education of Hubei Province,China(No.B2021278).

摘  要:Reconstructing 3D models for single objects with complex backgrounds has wide applications like 3D printing,AR/VR,and so on.It is necessary to consider the tradeoff between capturing data at low cost and getting high-quality reconstruction results.In this work,we propose a voxel-based modeling pipeline with sparse RGB-D images to effectively and efficiently reconstruct a single real object without the geometrical post-processing operation on background removal.First,referring to the idea of VisualHull,useless and inconsistent voxels of a targeted object are clipped.It helps focus on the target object and rectify the voxel projection information.Second,a modified TSDF calculation and voxel filling operations are proposed to alleviate the problem of depth missing in the depth images.They can improve TSDF value completeness for voxels on the surface of the object.After the mesh is generated by the MarchingCube,texture mapping is optimized with view selection,color optimization,and camera parameters fine-tuning.Experiments on Kinect capturing dataset,TUM public dataset,and virtual environment dataset validate the effectiveness and flexibility of our proposed pipeline.

关 键 词:Sparse RGB-D 3D reconstruction TSDF Depth map 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象