检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈靖超 徐树公 丁友东 CHEN Jingchao;XU Shugong;DING Youdong(School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China;Shanghai Film Academy,Shanghai University,Shanghai 200072,China)
机构地区:[1]上海大学通信与信息工程学院,上海200444 [2]上海大学上海电影学院,上海200072
出 处:《计算机应用》2023年第5期1416-1421,共6页journal of Computer Applications
摘 要:针对文本图像编辑任务中编辑前后文字风格样式不一致和生成的新文本可读性不足的问题,提出一种基于字体字符属性引导的文本图像编辑方法。首先,通过字体属性分类器结合字体分类、感知和纹理损失引导文本前景风格样式的生成方向,提升编辑前后的文字风格样式一致性;其次,通过字符属性分类器结合字符分类损失引导文字字形的准确生成,减小文本伪影与生成误差,并提升生成的新文本的可读性;最后,通过端到端微调的训练策略为整个分阶段编辑模型精炼生成结果。对比实验中,所提方法的峰值信噪比(PSNR)、结构相似度(SSIM)分别达到了25.48 dB、0.842,相较于SRNet(Style Retention Network)和SwapText分别提高了2.57 dB、0.055和2.11 dB、0.046;均方误差(MSE)为0.0043,相较于SRNet和SwapText分别降低了0.0031和0.0024。实验结果表明,所提方法能有效提升文本图像编辑的生成效果。Aiming at the problems of inconsistent text style before and after editing and insufficient readability of the generated new text in text image editing tasks,a text image editing method based on the guidance of font and character attributes was proposed.Firstly,the generation direction of text foreground style was guided by the font attribute classifier combined with font classification,perception and texture losses to improve the consistency of text style before and after editing.Secondly,the accurate generation of text glyphs was guided by the character attribute classifier combined with the character classification loss to reduce text artifacts and generation errors,and improve the readability of generated new text.Finally,the end-to-end fine-tuned training strategy was used to refine the generated results for the entire staged editing model.In the comparison experiments with SRNet(Style Retention Network)and SwapText,the proposed method achieves PSNR(Peak Signal-to-Noise Ratio)and SSIM(Structural SIMilarity)of 25.48 dB and 0.842,which are 2.57 dB and 0.055 higher than those of SRNet and 2.11 dB and 0.046 higher than those of SwapText,respectively;the Mean Square Error(MSE)is 0.0043,which is 0.0031 and 0.024 lower than that of SRNet and SwapText,respectively.Experimental results show that the proposed method can effectively improve the generation effect of text image editing.
关 键 词:文本图像编辑 字符识别 字体识别 多任务训练 属性引导
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90