检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:A.Daniel Carnerero Daniel R.Ramirez Daniel Limon Teodoro Alamo
机构地区:[1]the Department of System Engineering and Automation,University of Seville,Sevilla 41020,Spain [2]the School of Engineering,Tokyo Institute of Technology,Tokyo 152-8552,Japan [3]Department of System Engineering and Automation,University of Seville,Sevilla 41020,Spain
出 处:《IEEE/CAA Journal of Automatica Sinica》2023年第5期1263-1275,共13页自动化学报(英文版)
基 金:supported by the Agencia Estatal de Investigación (AEI)-Spain (PID2019-106212RB-C41/AEI/10.13039/501100011033);Junta de Andalucía and FEDER funds (P20_00546)。
摘 要:In this paper, we extend the state-space kriging(SSK) modeling technique presented in a previous work by the authors in order to consider non-autonomous systems. SSK is a data-driven method that computes predictions as linear combinations of past outputs. To model the nonlinear dynamics of the system, we propose the kernel-based state-space kriging(K-SSK), a new version of the SSK where kernel functions are used instead of resorting to considerations about the locality of the data. Also, a Kalman filter can be used to improve the predictions at each time step in the case of noisy measurements. A constrained tracking nonlinear model predictive control(NMPC) scheme using the black-box input-output model obtained by means of the K-SSK prediction method is proposed. Finally, a simulation example and a real experiment are provided in order to assess the performance of the proposed controller.
关 键 词:Data-driven methods model identification Kernel methods predictive control
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.103.40