检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李莉斯[1] 斯朗拥宗[1] 汪汉龙 LI Li-si;SILANG Yong-zong;WANG Han-long(School of Engineering,Tibet University,Lhasa Tibet 850000,China)
出 处:《计算机仿真》2023年第4期149-152,240,共5页Computer Simulation
基 金:西藏自治区自然科学基金项目(XZ2019ZRG);西藏大学大学生创新训练项目(S201910694014)。
摘 要:大跨度刚构桥施工的特性与应用环境复杂性导致大跨度刚构桥上部结构施工过程中存在较大风险,为此,提出一种大跨度刚构桥上部结构施工风险预测方法,准确预测大跨度刚构桥上部结构施工风险。以大跨度刚构桥上部结构施工信息采集与分析为基础,确定该施工工程存在潜在风险后,利用模糊层次分析法识别其潜在风险事故,构建优先关系判断矩阵生成模糊一致判断矩阵,确定主要风险因素;在此基础上,构建大跨度刚构桥上部结构极限状态方程,设计各主要风险因素样本,利用有限元—径向基神经网络—蒙特卡洛模拟(FRM)算法预测大跨度刚构桥上部结构施工风险。仿真结果表明:利用所提方法可准确预测大跨度刚结构桥上部结构施工风险。The risk in the superstructure construction of long-span rigid frame bridge derives from the characteristics of long-span rigid frame bridge construction and the complexity of application environment.Therefore,this paper studied a construction risk prediction method of superstructure of long-span rigid frame bridge.The potential construction risk of the superstructure was determined by the analysis of the construction risk of the large-span rigid frame bridge.Fuzzy analytic hierarchy process was introduced to identify potential risk accidents.The priority relationship was established to judge the matrix,and the fuzzy consistent judgment matrix was generated to determine the main risk factors.Then,the limit state equation of superstructure of long-span rigid frame bridge was founded.Samples of major risk factors were set.According to the finite element radial basis function neural network Monte Carlo simulation(FRM)algorithm,the construction risk of superstructure of long-span rigid frame bridge was estimated.The simulation results show that this method can accurately predict the construction risk of superstructure of longspan rigid structure bridge.
关 键 词:大跨度 刚构桥 上部结构 施工风险预测 层次分析法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7