检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yun Bo WANG Xiao Yu ZENG Huan Song ZHOU
机构地区:[1]School of Mathematics and Center for Nonlinear Studies,Northwest University,Xi'an 710127,P.R.China [2]Center for Mathematical Sciences,Wuhan University of Technology,Wuhan 430070,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2023年第4期707-727,共21页数学学报(英文版)
基 金:Supported by NSFC (Grant Nos.11931012,11871387,11871395 and 12171379)。
摘 要:We are interested in the existence and asymptotic behavior for the least energy solutions of the following fractional eigenvalue problem (P)(-△)^(s)u+V(x)u=μu+am(x)|u|^(4s/N)u,∫_(R^(N))|u|^(2)dx=1,u∈H^(s)(R^(N)),where s∈(0,1),μ∈R,a>0,V(x)and m(x)are L^(∞)(R^(N))functions with N≥2.We prove that there is a threshold a^(*)_(s)>0 such that problem(P)has a least energy solution u_(a)(x)for each a∈(0,a^(*)_(s))and u_(a)blows up,as a↗a^(*)_(s),at some point x_(0)∈R^(N),which makes V(x_(0))be the minimum and m(x_(0))be the maximum.Moreover,the precise blowup rates for u_(a)are obtained under suitable conditions on V(x)and m(x).
关 键 词:LAPLACIAN eigenvalue problem constrained variational problem energ mates
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145