基于身份感知模型的素描人脸识别方法  被引量:2

Sketch Face Recognition Based on Identity Perception Model

在线阅读下载全文

作  者:段中钰[1,2] 李玉涛[1,2] 田澍 郭亚男 杜康宁 张帆[1,2] DUAN Zhongyu;LI Yutao;TIAN Shu;GUO Yanan;DU Kangning;ZHANG Fan(Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument,Beijing Information Science and Technology University,Beijing 100101,China;School of Information and Communication Engineering,Beijing Information Science and Technology University,Beijing 100101,China)

机构地区:[1]北京信息科技大学光电测试技术及仪器教育部重点实验室,北京100101 [2]北京信息科技大学信息与通信工程学院,北京100101

出  处:《电讯技术》2023年第5期725-732,共8页Telecommunication Engineering

基  金:国家自然科学基金资助项目(U20A20163,62001033);北京市教委面上项目(KM202011232021,KM202111232014,KZ202111232049);“勤信人才”培育计划(QXTCP A201902,QXTCPC202108)。

摘  要:针对素描图像和光学图像之间存在较大的模态差异这一问题,提出了一种基于身份感知模型的素描人脸识别方法,实现跨模态图像生成和素描人脸识别。该方法应用新的感知损失来监督图像生成网络,生成更好的跨模态图像,减少模态差异带来的识别精度损失,并通过三元组损失来正则化类内和类间距离,增强识别模型的性能,用联合训练策略提升素描人脸识别能力。在UoM-SGFSv2、e-PRIP等素描人脸数据集上的实验结果表明,该方法识别效果优于其他对比算法。To reduce domain gap between the sketches and the photos,a sketch face recognition algorithm based on the identity perception model is proposed to achieve cross-modal image generation and sketch face recognition.This algorithm applies a new perceptual loss to supervise the image generation network,generate better cross-modal images,and reduce the recognition accuracy loss caused by the modal difference.It regularizes the intra-and inter-class distances by a triplet loss,enhances the performance of the recognition model,and uses the joint training strategy to improve the ability of sketch face recognition.The experimental results on sketch face data sets such as UoM-SGFSv2 show that the proposed method is better than other state-of-the-art methods.

关 键 词:素描人脸识别 模态差异 图像生成 感知损失 人脸合成 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象