Survey on leveraging pre-trained generative adversarial networks for image editing and restoration  被引量:4

在线阅读下载全文

作  者:Ming LIU Yuxiang WEI Xiaohe WU Wangmeng ZUO Lei ZHANG 

机构地区:[1]School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001,China [2]Department of Computing,Hong Kong Polytechnic University,Hong Kong 999077,China

出  处:《Science China(Information Sciences)》2023年第5期24-51,共28页中国科学(信息科学)(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.U19A2073,62006064);Hong Kong RGC RIF(Grant No.R5001-18);2020 Heilongjiang Provincial Natural Science Foundation Joint Guidance Project(Grant No.LH2020C001)。

摘  要:Generative adversarial networks(GANs)have drawn enormous attention due to their simple yet efective training mechanism and superior image generation quality.With the ability to generate photorealistic high-resolution(e.g.,1024×1024)images,recent GAN models have greatly narrowed the gaps between the generated images and the real ones.Therefore,many recent studies show emerging interest to take advantage of pre-trained GAN models by exploiting the well-disentangled latent space and the learned GAN priors.In this study,we briefly review recent progress on leveraging pre-trained large-scale GAN models from three aspects,i.e.,(1)the training of large-scale generative adversarial networks,(2)exploring and understanding the pre-trained GAN models,and(3)leveraging these models for subsequent tasks like image restoration and editing.

关 键 词:SURVEY generative adversarial networks pre-trained models image editing image restoration 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象