检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ming LIU Yuxiang WEI Xiaohe WU Wangmeng ZUO Lei ZHANG
机构地区:[1]School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001,China [2]Department of Computing,Hong Kong Polytechnic University,Hong Kong 999077,China
出 处:《Science China(Information Sciences)》2023年第5期24-51,共28页中国科学(信息科学)(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.U19A2073,62006064);Hong Kong RGC RIF(Grant No.R5001-18);2020 Heilongjiang Provincial Natural Science Foundation Joint Guidance Project(Grant No.LH2020C001)。
摘 要:Generative adversarial networks(GANs)have drawn enormous attention due to their simple yet efective training mechanism and superior image generation quality.With the ability to generate photorealistic high-resolution(e.g.,1024×1024)images,recent GAN models have greatly narrowed the gaps between the generated images and the real ones.Therefore,many recent studies show emerging interest to take advantage of pre-trained GAN models by exploiting the well-disentangled latent space and the learned GAN priors.In this study,we briefly review recent progress on leveraging pre-trained large-scale GAN models from three aspects,i.e.,(1)the training of large-scale generative adversarial networks,(2)exploring and understanding the pre-trained GAN models,and(3)leveraging these models for subsequent tasks like image restoration and editing.
关 键 词:SURVEY generative adversarial networks pre-trained models image editing image restoration
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15