检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡能 武兵 李翔宇 李聪明 CAI Neng;WU Bing;LI Xiang-yu;LI Cong-ming(College of Mechanical and Vehicle Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Key Laboratory of New Sensors and Intelligent Control of Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,China)
机构地区:[1]太原理工大学机械与运载工程学院,山西太原030024 [2]太原理工大学新型传感器与智能控制教育部重点实验室,山西太原030024
出 处:《机电工程》2023年第5期655-663,672,共10页Journal of Mechanical & Electrical Engineering
基 金:国家自然科学基金青年基金资助项目(72101173);山西省科技重大专项(20181102027)。
摘 要:采用深度对抗迁移学习算法进行故障诊断时,受到领域中丰富的特征属性的影响,在领域自适应中无法充分学习可用于迁移的共有知识特征,且其在类别水平上忽略了不同类别的对齐程度的差异。针对这一问题,提出了一种基于中间桥层和相似矩阵(MB-SM)的对抗故障诊断模型,以实现对滚动轴承故障进行跨域诊断识别的目的。首先,利用改进的一维多尺度残差网络对数据的特征进行了提取;然后,引入了中间桥层和相似矩阵,完成了对共有知识特征的充分学习,降低了整体网络的数据传输难度,进一步加强了源域和目标域中同一类别内的聚类和类别之间的分离,提高了故障数据的领域适配能力;最后,采用实验室轴承数据集和美国凯斯西储大学(CWRU)数据集,对基于中间桥层和相似矩阵的模型方法进行了验证。研究结果表明:在自建实验室数据集中,采用基于中间桥层和相似矩阵的方法可以达到90.37%的平均准确率;在美国凯斯西储大学(CWRU)数据集中,也可以达到99.34%的平均准确率。相较于其他迁移学习对比模型,采用该模型方法可以获得更好的诊断性能。In view of the existing fault diagnosis algorithms based on deep adversarial transfer learning could not fully learn the common knowledge features which could be used for transfer due to the influence of the rich feature attributes in the domain adaptation,and also the problem that the alignment degree of different categories was different at the category level in the global distribution alignment was ignored,an adversarial fault diagnosis model based on middle bridge layer and similarity matrix(MB-SM)was proposed to fully learn the common knowledge features,and realize the purpose of cross-domain diagnosis and identification of rolling bearing fault.Firstly,the improved one-dimensional multi-scale residual network was used to extract the features of the data.Then the middle bridge layer and similarity matrix were introduced to realize the full learning of the common knowledge features and reduce the difficulty of data transmission in the whole network.It further strengthened the clustering and the separation of categories in the same category in the source domain and target domain,and improved the domain adaptation ability of fault data.Finally,the proposed model method was verified by using laboratory bearing data set and Case Western Reserve University(CWRU)data set.The research results show that the average accuracy of the proposed method is 90.37%on the self-built laboratory data set and is 99.34%on the Case Western Reserve University(CWRU)data set,which can achieve better diagnostic performance than other transfer learning comparison models.
关 键 词:滚动轴承 故障跨域诊断识别 中间桥层和相似矩阵 对抗性迁移学习 领域自适应 深度卷积神经网络
分 类 号:TH133.33[机械工程—机械制造及自动化] TH17
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.75.74