高分遥感影像双通道并行混合卷积分类方法  被引量:4

Dual-channel parallel hybrid convolutional neural networks based classification method for high-resolution remote sensing image

在线阅读下载全文

作  者:顾小虎 李正军[2] 缪健豪 李星华 沈焕锋[4] GU Xiaohu;LI Zhengjun;MIAO Jianhao;LI Xinghua;SHEN Huanfeng(School of Remote Sensing and Information Engineering,Wuhan University,Wuhan 430079,China;CCCC Second Highway Consultants Co.,Ltd.,Wuhan 430056,China;Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,Shenzhen 518000,China;School of Resource and Environmental Sciences,Wuhan University,Wuhan 430079,China)

机构地区:[1]武汉大学遥感信息工程学院,湖北武汉430079 [2]中交第二公路勘察设计研究院有限公司,湖北武汉430056 [3]自然资源部城市国土资源监测与仿真重点实验室,广东深圳518000 [4]武汉大学资源与环境科学学院,湖北武汉430079

出  处:《测绘学报》2023年第5期798-807,共10页Acta Geodaetica et Cartographica Sinica

基  金:国家自然科学基金(42171302);国家重点研发计划(2019YFB2102904);自然资源部城市国土资源监测与仿真重点实验室开放基金(KF-2021-06-003)。

摘  要:高空间分辨率遥感影像拥有丰富的空间细节信息和多光谱信息。研究表明,二维卷积神经网络适于提取空间信息,而三维卷积神经网络更适于提取光谱信息。为了更好地利用空谱信息,本文提出一种双通道并行混合卷积神经网络(DPHCNN)方法,充分联合二维与三维卷积神经网络在空谱信息提取上的优势,同时引入混合注意力机制、多尺度卷积增强空间细节特征的提取能力,实现高分影像的精准分类。试验中利用高分二号影像数据集进行验证,与当前先进的深度学习分类方法相比,本文提出的DPHCNN方法在保证分类精度高、分类效率较好的同时,能在多时相影像分类中保持最高的稳健性,在综合评价上更具优势。High spatial resolution remote sensing images have rich spatial detail information and multi-spectral information.Previous studies have shown that two-dimensional convolutional neural networks(CNN)are suitable for extracting spatial information,while three-dimensional CNN are more suitable for extracting spectral information.In order to make better use of spatio-spectral information,this paper innovatively proposes a dual-channel parallel hybrid convolutional neural networks(DPHCNN),which fully combines the advantages of two-dimensional and three-dimensional CNN in spatio-spectral information extraction.Simultaneously,the hybrid attention mechanism and multi-scale convolution are introduced to enhance the extraction ability of spatial detail features to achieve accurate classification of high-resolution images.In the experiment,the GF-2 image dataset was used for verification.Compared with state-of-the-art deep learning classification methods,the DPHCNN method proposed in this paper not only has the highest classification accuracy and better classification efficiency but maintains the highest robustness in multi-temporal images classification,which has more advantages in comprehensive evaluation.

关 键 词:混合卷积神经网络 高分遥感影像 多尺度卷积 混合注意力机制 影像分类 

分 类 号:P227[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象