基于改进SPH算法的虚拟手术流血模拟  

Virtual Surgery Bleeding Simulation Based on Improved SPH Algorithm

在线阅读下载全文

作  者:李言 郭雅春 廖明亮 程强强[1] LI Yan;GUO Ya-chun;LIAO Ming-liang;CHENG Qiang-qiang(School of Testing and Photoelectric Engineering,Nanchang Hangkong University,Nanchang 330063,China;Blood Transfusion Department,the Third Hospital of Nanchang,Nanchang 330006,China)

机构地区:[1]南昌航空大学测试与光电工程学院,南昌330063 [2]南昌市第三医院输血科,南昌330006

出  处:《南昌航空大学学报(自然科学版)》2023年第1期37-43,共7页Journal of Nanchang Hangkong University(Natural Sciences)

基  金:国家自然科学基金(61902168);无损检测技术教育部重点实验室开放基金(EW202108220)。

摘  要:现有虚拟手术系统的流血模拟难以完全模拟血液自身独特的生物学特性,为了提高血液模拟的真实性,本文提出一种改进的SPH(Smoothed Particle Hydrodynamics, SPH)出血模拟方法。该算法采用改进的WCSPH(Weakly Compressible SPH,WCSPH)方法改进了传统算法中压强的求解,使其更符合血液自身的特性。此外,还提出一种基于密度的自适应光滑长度算法,使粒子系统可以根据邻居粒子的密度自适应地调节粒子的光滑长度,提高了插值精度,降低了计算误差,提高了模拟的稳定性。实验结果表明:该方法改善了血液仿真的边界细节,提高了粒子之间的稳定性,能够保证血液效果的真实性,并且运算速度快,保证了仿真的实时性。The bleeding simulation in the available virtual surgery system cannot well satisfy the unique biological features of blood.In order to improve the authenticity of bleeding simulation,an improved SPH method is developed for bleeding simulation in this work.The improved WCSPH is used to improve the solution of pressure in traditional algorithm,making it more suitable for the unique features of blood.Furthermore,an adaptive smoothing length algorithm based on density is proposed.The algorithm enables the particle system to adaptively adjust the smoothing length according to the density of the neighbor particles,which increases the interpolation accuracy,reduces the computing error,and enhances the system stability.The experimental results show that this method improves the visual effects of edge,increases the stability of particle system alongside a relatively high computational efficiency.Moreover,it can ensure the authenticity of the simulation effects and improve the real-time capability of simulation.

关 键 词:虚拟手术 出血模拟 平滑粒子流体动力学 WCSPH算法 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象