机械振动WSNs子带多阶层自适应量化数据压缩方法  被引量:2

Subband multilayer adaptive quantization data compression method for wireless sensor networks

在线阅读下载全文

作  者:汤恒行 汤宝平[1] 赵春华 叶泉兵 TANG Hengxing;TANG Baoping;ZHAO Chunhua;YE Quanbing(State Key Laboratory of Mechanical Transmission,Chongqing University,Chongqing 400030,China)

机构地区:[1]重庆大学机械传动国家重点实验室,重庆400030

出  处:《振动与冲击》2023年第10期188-193,214,共7页Journal of Vibration and Shock

基  金:国家自然科学基金(51675067)。

摘  要:针对资源受限的机械振动无线传感器网络传输大量振动数据时导致的内存空间消耗大及传输效率低等问题,提出一种子带多阶层自适应量化数据压缩方法。首先,传感器节点对原始数据进行分块离散余弦变换以确保子带能量集中;然后,采用子带多阶层自适应量化方法对分块变换数据进行量化以减少数据失真,提高重构数据精度;最后,为进一步提升数据的压缩性能和效率,对量化数据进行2 bit过滤游程算术编码处理。将提出的方法与其他数据压缩方法进行对比以验证该方法的性能,试验结果表明,该方法可以在资源受限的机械振动无线传感器网络节点中获得良好的压缩效果,对提高大量振动数据传输效率有重要意义。Aiming at the problems of large memory consumption and low transmission efficiency caused by the transmission of large amount of vibration data in resource-constrained mechanical vibration wireless sensor networks,this paper proposes a subband multilayer adaptive quantization data compression method.Firstly,the sensor node performs block discrete cosine transform to the original data,ensuring that the sub-band energy was concentrated.Then the subband multilayer adaptive quantization method was used to quantize the block transformed data to reduce data distortion and improve the accuracy of reconstructed data.Finally,in order to further improve the data compression performance and efficiency,2 bit filtering run-length arithmetic coding was performed for the quantized data.The proposed method was compared with other data compression methods.The experimental results show that the method can obtain good compression effect in the resource-constrained mechanical vibration wireless sensor network node,which is of great significance to improve the transmission efficiency of a large amount of vibration data.

关 键 词:机械振动监测 无线传感器网络 数据压缩 子带多阶层自适应 

分 类 号:TH17[机械工程—机械制造及自动化] TP393.1[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象