基于改进U-Net模型的二维电介质目标重构  

Two-dimensional dielectric object reconstruction based on improved U-Net model

在线阅读下载全文

作  者:金明 杨春夏 JIN Ming;YANG Chunxia(College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 201418,China)

机构地区:[1]上海师范大学信息与机电工程学院,上海201418

出  处:《上海师范大学学报(自然科学版)》2023年第2期212-216,共5页Journal of Shanghai Normal University(Natural Sciences)

摘  要:提出了一种基于改进U-Net(M-Net)模型的电磁逆散射算法.M-Net模型主要由多尺度输入层、U型卷积神经网络(CNN)、多尺度均值输出层组成.将散射场数据作为网络输入,能够在保证计算精度与计算效率的同时,减少人工计算工作量.以二维电介质为重构目标的仿真实验表明:与U-Net模型对比,应用M-Net模型求解电磁逆散射问题较为高效,输出结果误差更小.An electromagnetic inverse scattering algorithm was proposed based on the improved U-Net(M-Net)model in this paper.M-Net model was mainly composed of multi-scale input layer,U-type convolutional neural network(CNN)and multiscale mean output layer.By using the scattering field data as the network input,it could ensure the calculation accuracy and efficiency,and reduce the workload of manual calculation.The simulation experiments with the two-dimensional dielectric as the reconstruction target showed that the M-Net model had high efficiency in solving the electromagnetic inverse scattering problem and resulted in less error comparing with the U-Net model.

关 键 词:电磁逆散射 卷积神经网络(CNN) U-Net模型 M-Net模型 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象