检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ren Feng Jiacun Chen Zhenyue Xie Dingqiang Li Zaijian Yuan
机构地区:[1]National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China,Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,Institute of Eco-environmental and Soil Sciences,Guangdong Academy of Sciences,Guangzhou,510650,China [2]Meizhou International Institute of Soil and Water Conservation,Meizhou,514000,China
出 处:《International Soil and Water Conservation Research》2023年第2期301-310,共10页国际水土保持研究(英文)
基 金:the fund by Guangdong Foundation for Program ofScience and Technology Research(2020B1111530001);Guangdong Provincial Science and Technology Project(2021B1212050019,2022A050509005);GDAS Project ofScienceandTechnologyDevelopment(2022GDASZH-2022010105,2022GDASZH-2022010203);Meizhou Science and Technology Plan Project(2020B0204001).
摘 要:Rill erosion is affected by the sand particle content in soil,especially in the wind and water erosion transition region of the Loess Plateau.The sediment transport capacity(STC)is a key parameter in rill erosion research,assessing the impact of aeolian sand intrusion on the STC of rill flow is of importance for a better understanding of rill erosion.This study aimed to assess the effect of aeolian sand intrusion on the STC on sandified loess slopes,with typical slopes and flow discharges,using a flume system which consisting of a sediment-feeding and a sediment-supply/settlement flume.The sediment feeding flume was jointed by 10°higher than that of the sediment measurement flume section.Three flow discharges(2,4,and 8 L min^(-1))and four slope gradients(5°,10°,15°,and 25°)were used to represent the natural hydrological conditions under three intrusion rates(SIR)of aeolian sands(10%,20%,and 50%).The results show that STC increased with slope gradient and flow discharge,and the relationship between the STC and the SIR was significantly affected by the slope gradient;the STCs decreased with the SIR on a slope of 5°but increased with the SIR on steep slopes of 15°-25°,implying a significant impact of slope gradient on the relationship between SIR and STC.The SIR of 50%resulted in the highest sediment concentration nearly 1200 kg m^(-3)on slopes of 25°.On sandified loess slopes of 10%,20%,and 50%SIR,the STC were about 30%,46%,and 57%higher than on loess slopes,indicating an increased erosion rate by sand particle intrusion into loess soil.These results highlight the impact of sand intrusion on STC of rill flow and provide deeper insights into the soil loss process on the sandified loess slope.
关 键 词:Sand intrusion Loess soil Rill flow Transport capacity
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.48