检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈彦岚 CHEN Yanlan(Beijing University of Posts and Telecommunications,Beijing 100876,China)
机构地区:[1]北京邮电大学,北京100876
出 处:《信息与电脑》2023年第4期176-180,共5页Information & Computer
摘 要:信息时代,票据给人们的生活带来了极大的便利。但是,输入票据的过程较耗时,大量的票据会给财务人员带来一定的工作压力。幸运的是,大数据分析和深度学习技术的发展,使得通过一个基于深度学习的票据内容识别技术方案简化这一过程成为可能。这个方案涉及3个阶段。第一阶段,使用ResNet分类拍摄的票据图像。第二阶段,对特定的票据进行文本定位和识别。在文本检测阶段,DBNet被用来检测和定位票据中的细粒度文本。第三阶段,通过文本序列识别(Convolutional Recurrent Neural Network,CRNN)实现文本识别任务。基于深度学习的票据识别系统比人工识别的识别速度更快,准确率更高。In the information age,invoices bring convenience to our lives.However,the large number of bills can be stressful for finance staff,and the process of entering bills can be extremely time-consuming for tax officers.Fortunately,advances in big data analytics and deep learning technologies have made it possible to simplify this process by designing a complete deep learning-based technical solution for bill content recognition.This scheme involves several stages,starting with the classification of captured ticket images using ResNet.Next,text localization and recognition are performed for a specific ticket.In the text detection phase,DBNet is used to detect and locate fine-grained text in the invoices.Finally,the text recognition task is implemented by Convolutional Recurrent Neural Network(CRNN).The deep learning-based ticket recognition system significantly speeds up the recognition speed while maintaining a high accuracy rate compared to manual recognition in the former.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7