传感信息强偏差特征双层分解下的智能电表自动化检定  

Automatic Verification of Smart Meters Based on Two-layer Decomposition of Strong Deviation Characteristics of Sensing Information

在线阅读下载全文

作  者:刘超 王璐 刘文忠 王钢 LIU Chao;WANG Lu;LIU Wenzhong;WANG Gang(Electric Power Research Institute and the Marketing Service Center,State Grid Xinjiang Electric Power Co.,Ltd.,Urumqi 831400,China;NARI-TECH Nanjing Control Systems Co.,Ltd.,Nanjing 210000,China)

机构地区:[1]国网新疆电力有限公司营销服务中心(资金集约中心、计量中心),乌鲁木齐831400 [2]国电南瑞南京控制系统有限公司,南京210000

出  处:《自动化与仪表》2023年第5期9-12,31,共5页Automation & Instrumentation

摘  要:为解决智能电表检定装置在传感信息强偏差特征影响下,出现误差大、阈值波动明显的问题,该文提出了传感器信息强偏差特征多层分解下的智能电表自动化检定方法。分析传感信息强偏差特征产生的干扰问题,运用小波阈值去噪方法对采集数据进行处理。基于贝叶斯层次模型与中心定理构建双层模型,计算偏差特征的参数分布;利用吉布斯采样方法,对强偏差特征分类融合,完成智能电表自动化检定。实验结果显示,所提方法对传感信息强偏差特征双层分解后,仅出现一次阈值信号波动,相对误差值较低,在智能电表自动化检定中应用效果好。In order to solve the problem of large error and obvious threshold fluctuation of smart meter verification device under the influence of strong deviation feature of sensor information,an automatic verification method of smart meter based on multi-layer decomposition of strong deviation feature of sensor information is proposed.This paper analyzes the interference caused by the strong deviation feature of the sensing information,and uses the wavelet threshold denoising method to process the collected data.Based on Bayesian hierarchy model and central theorem,a two-level model is constructed to calculate the parameter distribution of deviation characteristics.Gibbs sampling method is used to classify and fuse strong deviation features to complete automatic verification of smart meters.The experimental results show that after the proposed method decomposes the strong deviation feature of the sensing information,only one threshold signal fluctuation occurs,and the relative error value is low.The application effect in the automatic verification of smart meters is good.

关 键 词:智能电表 检定系统 强偏差 软阈值方法 贝叶斯理论 吉布斯函数 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象