基于机器视觉的瓶装饮料液位识别与定位  被引量:1

Identification and Location of Beverages Liquid Level Based on Machine Vision

在线阅读下载全文

作  者:朱霆芳 赵博[1] 刘阳春[1] 冯林 李明辉 ZHU Tingfang;ZHAO Bo;LIU Yangchun;FENG Lin;LI Minghui(Chinese Academy of Agricultural Mechanization Sciences Group Co.,Ltd.,Beijing 100083,China)

机构地区:[1]中国农业机械化科学研究院集团有限公司,北京100083

出  处:《农业工程》2023年第2期19-26,共8页AGRICULTURAL ENGINEERING

基  金:广东省重点领域研发计划项目(2020B0202010004)。

摘  要:为实现饮料生产线PET瓶装饮料液位检测系统集成化和简单化,使用机器视觉方法取代传统传感器触发PET瓶装饮料液位检测程序,实现生产线PET瓶装饮料液位快速识别定位,提出了基于改进YOLOv7的生产线PET瓶装饮料液位快速识别与定位方法。在原YOLOv7的基础上,将原SPPCSPC池化金字塔结构改进为更快的SPPFCSPC结构,并使用SIoU损失函数对原有损失函数进行改进。实测试验结果表明,改进YOLOv7液位识别模型对包含有色彩失真和噪点的PET饮料瓶身、瓶装饮料液位识别精度为98.9%、96.3%,并且单幅图像识别并框定时间均长为12.1 ms。在采集图像样本色彩失真、多噪点和图像旋转情况下,模型仍能实现高精度瓶装饮料液位识别与定位。In order to realize integration and simplification of PET beverage bottles level detection system in beltline of beverage production and replace trigger instruction based on traditional sensors with method of integrated machine vision in liquid level detection program of bottled PET beverage to achieve rapid identification and positioning of PET bottled beverage liquid level in beltline,a realtime dentification and positioning method based on improved YOLOv7 was proposed for PET beverage bottle liquid level in beltline.Based on original YOLOv7,original SPPCSPC pooled pyramid structure was improved to a faster SPPFCSPC structure,and original loss function was improved by using SIoU loss function.Experiments showed that improved YOLOv7 model recognized PET beverage bottles and bottled liquid level whose part of samples contained color distortion and noise with a recognition accuracy of 98.9%and 96.3%,and recognition time of per image was 12.1 ms.The model could still achieve high-precision liquid level recognition and positioning of bottled beverages despite color distortion,multiple noise points,and image rotation in collected image samples.

关 键 词:饮料生产线 机器视觉 液位快速识别与定位 改进YOLOv7 SPPFCSPC SIoU 

分 类 号:S126[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象