Comparison of mesophilic and thermophilic anaerobic digestions of thermal hydrolysis pretreated swine manure: Process performance,microbial communities and energy balance  被引量:2

在线阅读下载全文

作  者:Xiaohui Liu Changmin Lee Jae Young Kim 

机构地区:[1]Department of Civil and Environmental Engineering,Seoul National University,Seoul 08826,Korea

出  处:《Journal of Environmental Sciences》2023年第4期222-233,共12页环境科学学报(英文版)

基  金:supported by the Science and Technology Support Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT(MSIT)(No. NRF-2019K1A3A9A01000029);the financial support from China Scholarship Council;the technical support from BrainKorea21 Four research program of the National Research Foundation of Korea;Institute of Construction and Environmental Engineering at Seoul National University。

摘  要:Anaerobic digestion (AD) of swine manure (SM) commonly shows low biogas output and unsatisfactory economic performance. In this study, thermophilic AD (TAD, 50±1℃) was combined with thermal hydrolysis pretreatment (THP, 170℃/10 bar), to investigate its potential for maximizing biogas yield, securing successful digestion and microbial diversity, as well as improving energy balance. Four lab-scale continuously stirred tank reactors were operated for 300 days and compared with each other, i.e., reactor 1 (raw SM fed in mesophilic AD:RSM-MAD), reactor 2 (THP-treated SM fed in MAD:TSM-MAD), reactor 3 (RSM-TAD),and reactor 4 (TSM-TAD). The results showed that THP was efficient to increase methane production of SM, TSM-TAD mode led to the highest methane yield (129.8±40.5 mL-CH_(4)/gVS/day) among the tests (p <0.05). Although TAD was more likely to induce free ammonia (> 700 mg/L) or volatile fatty acids (> 6000 mg/L) accumulation compared with MAD in start-up phase, TSM-TAD treatment mode behaved a sustainable digestion process in a long-term operation. For TSM-TAD scenario, higher Shannon–Weaver (3.873) and lower Simpson index (0.061) indicated this mode ensured and enlarged the diversity of bacteria communities. Phylum Bathyarchaeota was dominant (59.3%-90.0%) in archaea community,followed by Euryarchaeota in the four reactors. RSM-MAD treatment mode achieved the highest energy output (4.65 GJ/day), TSM-TAD was less effective (-17.38 GJ/day) due to increased energy demands. Thus improving the energetic efficiency of THP units is recommended for the development of TSM-TAD treatment mode.

关 键 词:Thermal hydrolysis pretreatment Digestion temperature Process performances Microbial communities Energy balance 

分 类 号:X713[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象