检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐文虎[1] 林泽康 辛妍丽 赵伟 吴亮 金晶 TANG Wenhu;LIN Zekang;XIN Yanli;ZHAO Wei;WU Liang;JIN Jing(School of Electric Power Engineering,South China University of Technology,Guangzhou 510641,China;School of Automation,Guangdong Polytechnic Normal University,Guangzhou 510665,China;Shantou Power Supply Bureau of China Southern Power Grid Co.,Ltd.,Shantou 515000,China)
机构地区:[1]华南理工大学电力学院,广东广州510641 [2]广东技术师范大学自动化学院,广东广州510665 [3]广东电网有限责任公司汕头供电局,广东汕头515044
出 处:《电力工程技术》2023年第3期102-111,148,共11页Electric Power Engineering Technology
基 金:国家自然科学基金资助项目(51977082)。
摘 要:为实现柔性直流(voltage sourced converter-high voltage direct current,VSC-HVDC)换流阀冷却系统入阀水温的智能预测,文中提出一种基于随机森林(random forest,RF)和双向长短时记忆(bi-directional long short-term memory,BiLSTM)网络混合的柔直换流阀冷却系统入阀水温的预测模型,并以此为基础对柔直换流站阀冷系统的冷却能力进行评估。首先,采用RF算法对由阀冷系统监测变量组成的高维特征集进行重要性分析,筛选出影响入阀水温的重要特征,与历史入阀水温构成输入特征向量。然后,将特征向量输入到BiLSTM预测模型,对模型进行训练并实现对入阀水温的准确预测和冷却能力定量评估。最后,以广东电网某柔直换流站为实例对所提方法进行分析,验证了所提出的基于RF-BiLSTM的混合模型预测精度优于BiLSTM模型、RF模型、支持向量机(support vector machine,SVM)模型和自回归滑动平均模型(auto-regressive and moving average,ARMA)模型,并且实现了冷却能力的定量评估。结果表明该换流站冷却裕量达98%,存在过度冷却、能源浪费的问题,与换流站现场运行情况相符,验证了文中所提方法的有效性和准确性。In order to realize the intelligent prediction of valve inlet water temperature of a voltage sourced converter-high voltage direct current(VSC-HVDC)valve cooling system,a prediction model of inlet water temperature of VSC-HVDC based on a hybrid model of the random forest(RF)and bi-directional long short-term memory(BiLSTM)is proposed,and the cooling capacity of the cooling system is evaluated on the basis of the proposed prediction model.Firstly,a RF algorithm is used to analyze the importance of high-dimensional feature sets,which consist of all the monitoring variables of the valve cooling system.Then the important characteristic parameters affecting the inlet water temperature are filtered out to form an input feature vector with the historical inlet water temperature.Secondly,the feature vector is input to the developed BiLSTM prediction model to train the model for accurately predicting inlet valve water temperature and quantitatively evaluating the cooling capacity.Finally,a VSC-HVDC converter station in Guangdong power grid is taken as an example to verify the effectiveness and superiority of the proposed method.Simulation results indicate that the accuracy of the proposed hybrid model based on RF-BiLSTM is higher than that based on BiLSTM model,RF model,support vector machine(SVM)model and auto-regressive and moving average(ARMA)model.Moreover,the cooling capacity is evaluated quantitatively and accurately.Analysis results show that the cooling margin of this converter station is up to 98%,which indicates that there is a problem of overcooling and energy waste.The evaluation result of the cooling capacity is well consistent with the field operation result of the converter station,which confirms the effectiveness and the accuracy of the proposed method.
关 键 词:柔直阀冷系统 机器学习 随机森林(RF)算法 双向长短时记忆(BiLSTM)网络 入阀水温预测 冷却能力评估
分 类 号:TM721.1[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.147.188