Constructing a hollow core-shell structure of RuO_(2) wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor  

在线阅读下载全文

作  者:Lianlian Zhao Fufu Di Xiaonan Wang Sumbal Farid Suzhen Ren 

机构地区:[1]State Key Laboratory of Fine Chemicals,College of Chemical Engineering,Dalian University of Technology,Dalian 116024,China

出  处:《Chinese Journal of Chemical Engineering》2023年第3期93-100,共8页中国化学工程学报(英文版)

基  金:supported by Jinan Mingzhu Co., Ltd (HX20200364)。

摘  要:Hollow core-shell structure nanomaterials have been broadly used in energy storage, catalysis, reactor,and other fields due to their unique characteristics, including the synergy between different materials,a large specific surface area, small density, large charge carrying capacity and so on. However, their synthesis processes were mostly complicated, and few researches reported one-step encapsulation of different valence states of precious metals in carbon-based materials. Hence, a novel hollow core-shell nanostructure electrode material, RuO_(2)@Ru/HCs, with a lower mass of ruthenium to reduce costs was constructed by one-step hydrothermal method with hard template and co-assembled strategy, consisting of RuO_(2) core and ruthenium nanoparticles(Ru NPs) in carbon shell. The Ru NPs were uniformly assembled in the carbon layer, which not only improved the electronic conductivity but also provided more active centers to enhance the pseudocapacitance. The RuO_(2) core further enhanced the material’s energy storage capacity. Excellent capacitance storage(318.5 F·g^(-1)at 0.5 A·g^(-1)), rate performance(64.4%) from 0.5 A·g^(-1)to 20 A·g^(-1), and cycling stability(92.3% retention after 5000 cycles) were obtained by adjusting Ru loading to 0.92%(mass). It could be attributed to the wider pore size distribution in the micropores which increased the transfer of electrons and protons. The symmetrical supercapacitor device based on RuO_(2)@Ru/HCs could successfully light up the LED lamp. Therefore, our work verified that interfacial modification of RuO_(2) and carbon could bring attractive insights into energy density for nextgeneration supercapacitors.

关 键 词:Ruthenium nanoparticles Ruthenium oxide Hollow carbon sphere shell Hierarchical pore structure Silica template Hydrothermal method 

分 类 号:TM53[电气工程—电器] TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象