检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xin Wang Yu Yang Xin Zhao Min Huang Qibing Zhu
机构地区:[1]Key Laboratory of Advanced Process Control for Light Industry,Ministry of Education,Jiangnan University,Wuxi 214122,Jiangsu,China [2]School of Physics and Electronic Electrical Engineering,Huaiyin Normal University,Huai’an,223300,Jiangsu,China
出 处:《International Journal of Agricultural and Biological Engineering》2023年第2期199-206,共8页国际农业与生物工程学报(英文)
基 金:financially supported by the National Natural Science Foundation of China(Grant No.61772240;No.51961125102);the 111 Project(B12018).
摘 要:Crop coverage(CC)is an important parameter to represent crop growth characteristics,and the ahead forecasting of CC is helpful to track crop growth trends and guide agricultural management decisions.In this study,a novel CNN-LSTM model that combined the advantages of convolutional neural network(CNN)in feature extraction and long short-term memory(LSTM)in time series processing was proposed for multi-day ahead forecasting of maize CC.Considering the influence of climate change on maize growth,five microclimatic factors were combined with historical maize CC estimated from field images as the input variables of the forecasting model.The field experimental data of four observation points for more than three years were used to evaluate the performance of CNN-LSTM at the forecasting horizon of three to seven days ahead and compared the forecasting results to CNN and LSTM.The results demonstrated that CNN-LSTM obtained the lowest RMSE and the highest R2 at all forecasting horizons.Subsequently,the performance of CNN-LSTM under univariate(historical maize CC)and multivariate(historical maize CC+microclimatic factors)input was compared,and the results indicated that additional microclimatic factors were effective in improving the forecasting performance.Furthermore,the 3-day ahead forecasting results of CNN-LSTM in different growth stages of maize were also analyzed,and the results showed that the highest forecasting accuracy was obtained in the seven leaves stage.Therefore,CNN-LSTM can be considered a useful tool to forecast maize CC.
关 键 词:maize crop coverage multi-day ahead forecasting CNN-LSTM field images microclimatic factors
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38