Supercritical fluid-assisted fabrication of C-doped Co_(3)O_(4) nanoparticles based on polymer-coated metal salt nanoreactors for efficient enzyme-mimicking and glucose sensor properties  被引量:1

在线阅读下载全文

作  者:Ze-Wen Kang Jun-Yu Zhang Ze-Zhen Li Ranjith Kumar Kankala Shi-Bin Wang Ai-Zheng Chen 

机构地区:[1]Institute of Biomaterials and Tissue Engineering,Huaqiao University,Xiamen 361021,China [2]Fujian Provincial Key Laboratory of Biochemical Technology(Huaqiao University),Xiamen 361021,China [3]Instrumental Analysis Center,Laboratory and Equipment Management Department,Huaqiao University,Xiamen 361021,China

出  处:《Nano Research》2023年第5期7431-7442,共12页纳米研究(英文版)

基  金:the National Natural Science Foundation of China(Nos.81971734,32071323,and 32271410);Program for Innovative Research Team in Science and Technology in Fujian Province University,Instrumental Analysis Center of Huaqiao University for TEM images,and Subsidized Project for Cultivating Postgraduates’Innovative Ability in Scientific Research of Huaqiao University are gratefully acknowledged。

摘  要:Nanomaterials doped with non-metallic C have attracted tremendous attention as potential nano-artificial enzymes due to their ability to change the energy band structure to improve their intrinsic properties.Herein,we report a green,facile,efficient,fast strategy to access high-performance nanozymes via supercritical CO_(2)fluid technology-fabricated polymer nanoreactor of poly-(methyl vinyl ether-co-maleic anhydride)(PVM/MA)coated Co(NO_(3))_(2)into C-doped Co_(3)O_(4)(C-Co_(3)O_(4))nanozyme by a onestep calcination process.Converting PVM/MA to C doping into Co_(3)O_(4)shortens the entire lattice constant of the crystal structure,and the overall valence band energy level below the Fermi level shifts toward the lower energy direction.The as-prepared CCo_(3)O_(4)demonstrated significant peroxidase-like catalytic activity,significantly greater than the undoped Co_(3)O_(4)nanoparticle nanozyme.The following density functional theory(DFT)calculations revealed that the doped nano-enzyme catalytic site displayed a unique electronic structure,altering the material surface with more electrons to fill the anti-bond of the two molecular orbitals,significantly improving the peroxidase-like enzyme catalytic and glucose sensor performance.The resultant enzymatic glucose sensing in a linear range of 0.1–0.6 mM with a detection limit of 3.86μM is in line with standard Michaelis–Menten theory.Collectively,this work demonstrates that converting polymers into nanozymes of C-doped form by supercritical CO_(2)fluid technology in a step is an effective strategy for constructing high-performance glucose sensor nanozymes.This cost-effective,reliable,precise system offers the potential for rapid analyte detection,facilitating its application in a variety of fields.

关 键 词:supercritical fluid poly-(methyl vinyl ether-co-maleic anhydride)(PVM/MA) C-doped Co_(3)O_(4) nanozymes density functional theory(DFT)calculation 

分 类 号:TB383[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象