Application of physics-informed neural network in the analysis of hydrodynamic lubrication  被引量:2

在线阅读下载全文

作  者:Yang ZHAO Liang GUO Patrick Pat Lam WONG 

机构地区:[1]School of Automotive and Transportation Engineering,Shenzhen Polytechnic,Shenzhen 518055,China [2]School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,China [3]Department of Mechanical Engineering,City University of Hong Kong,Hong Kong,China

出  处:《Friction》2023年第7期1253-1264,共12页摩擦(英文版)

基  金:supported by the National Natural Science Foundation of China(No.51805310);the Scientific Research Startup Fund for Shenzhen Highcaliber Personnel of SZPT(No.6022310045k)。

摘  要:The last decade has witnessed a surge of interest in artificial neural network in many different areas of scientific research.Despite the rapid expansion in the application of neural networks,few efforts have been carried out to introduce such a powerful tool into lubrication studies.Thus,this work aims to apply the physics-informed neural network(PINN)to the hydrodynamic lubrication analysis.The 2D Reynolds equation is solved.The PINN is a meshless method and does not require big data for network training compared with classical methods.Our results are consistent with those obtained by experiments and the finite element method.Hence,we envision that the PINN method will have great application potential in lubrication and bearing research.

关 键 词:physics-informed neural network hydrodynamic lubrication slider bearing 

分 类 号:R318[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象