检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘云鹏[1] 李泳霖 裴少通[1] 刘嘉硕 来庭煜 LIU Yunpeng;LI Yonglin;PEI Shaotong;LIU Jiashuo;LAI Tingyu(Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense(North China Electric Power University),Baoding 071003,China)
机构地区:[1]河北省输变电设备安全防御重点实验室(华北电力大学),河北保定071003
出 处:《华北电力大学学报(自然科学版)》2023年第3期1-8,共8页Journal of North China Electric Power University:Natural Science Edition
基 金:河北省自然科学基金资助项目(E2019502150).
摘 要:紫外成像检测是一种有效的非接触式放电检测方法,紫外放电图像中彩色光斑的准确分割直接关系到其后续诊断的准确性。因此,提出了一种基于灰度差异的紫外图像彩色光斑区域识别分割方法,旨在准确提取彩色的紫外光斑区域。首先,利用紫外成像仪采集了电气设备紫外放电视频,其中放电光斑区域颜色涵盖了目前紫外成像仪常用的色彩;其次,改进了紫外视频的处理方法,利用高斯函数对紫外图像进行预处理,将光斑区域像素与非光斑区域像素的灰度差异平均提高了2.18倍,进而可利用阈值分割算法对光斑区域进行更准确的分割;最后,提出精度和召回率作为算法应用效果评价指标,将算法应用于1000张紫外图像帧,其平均值分别为0.9632和0.9827。由此可知算法实现了紫外检测图像中彩色光斑区域的准确分割,能够满足后续对紫外放电图像进行可靠诊断的要求,为基于紫外成像的电气设备放电诊断提供了可靠保证。Ultraviolet(UV)imaging detection is an effective non-contact discharge detection method and the accurate segmentation of colored spots in UV discharge images is directly related to the accuracy of later diagnosis.Therefore,a method of color spot regions recognition and segmentation based on gray variance in UV image was proposed to accurately extract color UV spot regions.Firstly,UV discharge videos of electrical equipment were collected by UV imager,among which the color of the discharge spot area covers the colors commonly used in current UV imagers.Secondly,the processing method of UV video was improved.Gaussian function was used to pre-process the UV image,which increased the gray difference between the pixels of the spot region and the pixels of the non-spot region by an average of 2.18 times,and then the threshold segmentation algorithm could be used to segment the spot region more accurately.Finally,the precision and recall rate were used as the evaluation indexes of the algorithm application effect,and the algorithm was applied to 1000 UV image frames with the average values of 0.9632 and 0.9827 respectively.According to evaluation indexes,the algorithm achieved the accurate segmentation of colored spot regions in UV detection images,which could meet the requirements of the subsequent reliable diagnosis of UV discharge images and provide a reliable guarantee for the discharge diagnosis of electrical equipment based on UV imaging.
分 类 号:TM835[电气工程—高电压与绝缘技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.193.1