Novel models for simulating maize growth based on thermal time and photothermal units: Applications under various mulching practices  被引量:1

在线阅读下载全文

作  者:LIAO Zhen-qi ZHENG Jing FAN Jun-liang PEI Sheng-zhao DAI Yu-long ZHANG Fu-cang LI Zhi-jun 

机构地区:[1]Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas,Ministry of Education,Northwest A&F University,Yangling 712100,P.R.China [2]Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,P.R.China

出  处:《Journal of Integrative Agriculture》2023年第5期1381-1395,共15页农业科学学报(英文版)

基  金:funded by the National Natural Science Foundation of China (51879226);the Chinese Universities Scientific Fund (2452020018)。

摘  要:Maize (Zea mays L.) is one of the three major food crops and an important source of carbohydrates for maintaining food security around the world.Plant height (H),stem diameter (SD),leaf area index (LAI) and dry matter (DM) are important growth parameters that influence maize production.However,the combined effect of temperature and light on maize growth is rarely considered in crop growth models.Ten maize growth models based on the modified logistic growth equation (Mlog) and the Mitscherlich growth equation (Mit) were proposed to simulate the H,SD,LAI and DM of maize under different mulching practices based on experimental data from 2015–2018.Either the accumulative growing degree-days (AGDD),helio thermal units (HTU),photothermal units (PTU) or photoperiod thermal units (PPTU,first proposed here) was used as a single driving factor in the models;or AGDD was combined with either accumulative actual solar hours (ASS),accumulative photoperiod response (APR,first proposed here) or accumulative maximum possible sunshine hours (ADL) as the dual driving factors in the models.The model performances were evaluated using seven statistical indicators and a global performance index.The results showed that the three mulching practices significantly increased the maize growth rates and the maximum values of the growth curves compared with non-mulching.Among the four single factor-driven models,the overall performance of the Mlog_(PTU)Model was the best,followed by the Mlog_(AGDD)Model.The Mlog_(PPTU)Model was better than the Mlog_(AGDD)Model in simulating SD and LAI.Among the 10 models,the overall performance of the Mlog_(AGDD–APR)Model was the best,followed by the Mlog_(AGDD–ASS)Model.Specifically,the Mlog_(AGDD–APR)Model performed the best in simulating H and LAI,while the Mlog_(AGDD–ADL)and Mlog_(AGDD–ASS)models performed the best in simulating SD and DM,respectively.In conclusion,the modified logistic growth equations with AGDD and either APR,ASS or ADL as the dual driving factors outperformed the commonly us

关 键 词:THERMAL time ACCUMULATIVE growing DEGREE-DAYS helio THERMAL UNITS PHOTOTHERMAL UNITS growth model 

分 类 号:S513[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象