基于形态学序列和多源先验信息的城市建筑物高分遥感提取  被引量:4

High-resolution remote sensing extraction of urban buildings based on morphological sequences and multi-source a priori information

在线阅读下载全文

作  者:李治 隋正伟[1] 傅俏燕[1] 郑琎琎 卜桐 LI Zhi;SUI Zhengwei;FU Qiaoyan;ZHENG Jinjin;BU Tong(China Center for Resources Satellite Date and Application,Beijing 100094,China)

机构地区:[1]中国资源卫星应用中心,北京100094

出  处:《遥感学报》2023年第4期998-1008,共11页NATIONAL REMOTE SENSING BULLETIN

基  金:国家自然科学基金(编号:42101383);国家重点研发计划(编号:2018YFA0605500)。

摘  要:城市建筑物自动提取是高分辨率遥感影像理解的重要研究方向,其对于城市基础地理信息更新和城市生态保护均具有重要的应用价值和实际意义。然而由于城市场景的复杂性和建筑物形态的多样性降低了空间特征的综合表达能力,成为了制约城市建筑物自动提取的瓶颈问题。为此,本研究在综合分析城市建筑物不同模式空间特征的基础上,提出了一种多模式形态学序列特征和多源先验信息协同的城市建筑物高分遥感自动提取方法。该方法在提取高分遥感多模式形态学序列特征的基础上,引入多源先验信息构建自适应分割模型对其进行自适应分割与信息融合,从而实现城市建筑物信息的自动提取。实验结果表明,本文方法能够准确且自动的提取城市建筑物信息,结果的准确性均优于DMPs和DAPs算法。Urban building extraction is an important research direction for the understanding and target recognition of high-resolution optical remote sensing images.Realizing accurate automatic building extraction has important application value and practical significance for the acquisition and update of basic urban geographic information.Given the complexity of urban scenes and the diversity of building forms,the characteristics of urban buildings are difficult to express fully,and the generalization ability of samples is insufficient,thus becoming a bottleneck problem for the automatic extraction of urban buildings.In this study,a multi-modal morphological-sequence-feature synergy method is proposed to utilize fully the advantages of each morphological sequence feature from different modes and mine the high-dimensional spatial information of urban buildings jointly.On this basis,we introduce multi-source a priori information and develop an adaptive segmentation model method based on multi-source a priori information to achieve the automatic recognition of urban buildings.This method can help avoid the limitations,such as errors and low efficiency,brought by manual threshold selection.The process of the method for urban building extraction proposed in this study is mainly divided into four steps.First,the differential morphological structure sequence features and differential morphological attribute sequence features of remote sensing images are calculated on the basis of high-resolution remote sensing images.Second,the feature selection model is constructed to optimize the differential morphological structure sequence features and differential morphological attribute sequence features.Then,the adaptive segmentation model is constructed on the basis of the multi-source a priori information products.The adaptive segmentation of the preferred features is performed to obtain the initial information of urban buildings.Finally,the voting method is used to fuse the initial information of urban buildings at the decision level t

关 键 词:形态学结构序列 形态学属性序列 特征显著水平模型 自适应分割模型 决策级信息融合 多源先验信息 

分 类 号:P2[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象