检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiao Lan HU Jia Ao LI
机构地区:[1]School of Mathematics and Statistics&Hubei Key Laboratory of Mathematical Sciences,Central China Normal University,Wuhan 430079,P.R.China [2]School of Mathematical Sciences and LPMC,Nankai University,Tianjin 300071,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2023年第5期904-922,共19页数学学报(英文版)
基 金:partially supported by the National Natural Science Foundation of China(Grant No.11971196);Hubei Provincial Science and Technology Innovation Base(Platform)Special Project 2020DFH002;the second author was partially supported by the National Natural Science Foundation of China(Grant Nos.11901318,12131013);the Young Elite Scientists Sponsorship Program by Tianjin(Grant No.TJSQNTJ-2020-09)。
摘 要:A Steinberg-type conjecture on circular coloring is recently proposed that for any prime p≥5,every planar graph of girth p without cycles of length from p+1 to p(p-2)is Cp-colorable(that is,it admits a homomorphism to the odd cycle Cp).The assumption of p≥5 being prime number is necessary,and this conjecture implies a special case of Jaeger’s Conjecture that every planar graph of girth 2p-2 is Cp-colorable for prime p≥5.In this paper,combining our previous results,we show the fractional coloring version of this conjecture is true.Particularly,the p=5 case of our fractional coloring result shows that every planar graph of girth 5 without cycles of length from 6 to 15 admits a homomorphism to the Petersen graph.
关 键 词:Fractional coloring circular coloring planar graphs GIRTH HOMOMORPHISM
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49