Resonant interactions among two-dimensional nonlinear localized waves and lump molecules for the(2+1)-dimensional elliptic Toda equation  

在线阅读下载全文

作  者:庞福忠 葛根哈斯 赵雪梅 Fuzhong Pang;Hasi Gegen;Xuemei Zhao(School of Mathematical Science,Inner Mongolia University,Hohhot 010021,China)

机构地区:[1]School of Mathematical Science,Inner Mongolia University,Hohhot 010021,China

出  处:《Chinese Physics B》2023年第5期200-217,共18页中国物理B(英文版)

基  金:the National Natural Science Foundation of China(Grant Nos.12061051 and 11965014)。

摘  要:The(2+1)-dimensional elliptic Toda equation is a high-dimensional generalization of the Toda lattice and a semidiscrete Kadomtsev–Petviashvili I equation.This paper focuses on investigating the resonant interactions between two breathers,a breather/lump and line solitons as well as lump molecules for the(2+1)-dimensional elliptic Toda equation.Based on the N-soliton solution,we obtain the hybrid solutions consisting of line solitons,breathers and lumps.Through the asymptotic analysis of these hybrid solutions,we derive the phase shifts of the breather,lump and line solitons before and after the interaction between a breather/lump and line solitons.By making the phase shifts infinite,we obtain the resonant solution of two breathers and the resonant solutions of a breather/lump and line solitons.Through the asymptotic analysis of these resonant solutions,we demonstrate that the resonant interactions exhibit the fusion,fission,time-localized breather and rogue lump phenomena.Utilizing the velocity resonance method,we obtain lump–soliton,lump–breather,lump–soliton–breather and lump–breather–breather molecules.The above works have not been reported in the(2+1)-dimensional discrete nonlinear wave equations.

关 键 词:(2+1)-dimensional elliptic Toda equation resonant interaction lump molecules 

分 类 号:O175.25[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象