AG-GATCN:A novel method for predicting essential proteins  

在线阅读下载全文

作  者:杨培实 卢鹏丽 张腾 Peishi Yang;Pengli Lu;Teng Zhang(School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China)

机构地区:[1]School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China

出  处:《Chinese Physics B》2023年第5期737-745,共9页中国物理B(英文版)

基  金:the National Natural Science Foundation of China(Grant Nos.11861045,11361033,and 62162040)。

摘  要:Essential proteins play an important role in disease diagnosis and drug development.Many methods have been devoted to the essential protein prediction by using some kinds of biological information.However,they either ignore the noise presented in the biological information itself or the noise generated during feature extraction.To overcome these problems,in this paper,we propose a novel method for predicting essential proteins called attention gate-graph attention network and temporal convolutional network(AG-GATCN).In AG-GATCN method,we use improved temporal convolutional network(TCN)to extract features from gene expression sequence.To address the noise in the gene expression sequence itself and the noise generated after the dilated causal convolution,we introduce attention mechanism and gating mechanism in TCN.In addition,we use graph attention network(GAT)to extract protein–protein interaction(PPI)network features,in which we construct the feature matrix by introducing node2vec technique and 7 centrality metrics,and to solve the GAT oversmoothing problem,we introduce gated tanh unit(GTU)in GAT.Finally,two types of features are integrated by us to predict essential proteins.Compared with the existing methods for predicting essential proteins,the experimental results show that AG-GATCN achieves better performance.

关 键 词:complex networks essential proteins temporal convolutional network graph attention network gene expression 

分 类 号:R318[医药卫生—生物医学工程] TP183[医药卫生—基础医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象