检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王东[1] 李佩声 WANG Dong;LI Peisheng(College of Computer Science and Engineering,Chongqing University of Technology,Chongqing 400054,China)
机构地区:[1]重庆理工大学计算机科学与工程学院,重庆400054
出 处:《重庆理工大学学报(自然科学)》2023年第5期178-184,共7页Journal of Chongqing University of Technology:Natural Science
摘 要:针对传统文本分类模型提取中文短文本内在语义信息不够全面的缺点,提出了一种融合预训练模型和胶囊网络的文本分类模型。使用多尺度卷积神经网络提取预训练模型各层蕴含不同层次的局部语义,采用注意力机制融合得到多粒度局部语义和胶囊网络获取的全局语义,结合正则化方法提高模型对文本情感极性的判别能力。对比实验中模型在3个不同领域的真实数据集上的F1值,结果表明:模型利用改进的胶囊网络能够更加全面地提取中文短文本语义特征,提升情感极性判别精度。In order to address the shortcomings of traditional text classification models in incomplete extracting the intrinsic semantic information of short Chinese texts,this paper proposes a text classification model that fuses pre-training models and capsule networks.A multi-scale convolutional neural network is firstly used to extract the local semantics in each layer of different levels of the pre-training model.After that,an attention mechanism is used to fuse the obtained multi-grained local semantics and the global semantics obtained through the capsule network,which is then combined with a regularization method to improve the discrimination ability of the model to the sentiment polarity of the text.Finally,the F1 values of the model in the experiment are compared with the real datasets in three different domains.The experimental results show that the model can extract the semantic features of the short Chinese texts more comprehensively by using the improved capsule network,which improves the accuracy of sentiment polarity discrimination.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222