检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:常晓雅 文明杰 张迪[1] 王永锦 初庆钊 朱通 陈东平 CHANG Xiao-ya;WEN Ming-jie;ZHANG Di;WANG Yong-jin;CHU Qing-zhao;ZHU Tong;CHEN Dong-ping(State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China;Shanghai Engineering Research Center of Molecular Therapeutics&New Drug Development,School of Chemistry and Molecular Engineering,East China Normal University,Shanghai 200062,China)
机构地区:[1]北京理工大学爆炸科学与技术重点实验室,北京100081 [2]上海市分子治疗与新药开发工程研究中心,华东师范大学化学与分子工程学院,上海200062
出 处:《火炸药学报》2023年第5期361-377,I0008,共18页Chinese Journal of Explosives & Propellants
基 金:北京理工大学爆炸科学与技术国家重点实验室自主课题(No.ZDKT21-01);国家自然科学基金青年项目(No.52106130)。
摘 要:归纳了机器学习势模型的发展历程、构造方案和训练集搭建策略。机器学习势模型利用第一性原理计算精度的势能面,通过机器学习算法进行重建,已成功用于含能材料燃烧爆炸的分子模拟研究,包括硝胺类含能材料(RDX、CL-20、ICM-102)、氧化剂(AP)和高能颗粒(Al、B)等,并总结了机器学习势在碳氢燃料燃烧方面的研究进展,展望了机器学习势在含能材料分子模拟中所面临的挑战和未来发展前景。指出以深度势(Deep Potential)模型为代表的机器学习势具有高精度、高效率的特点,充分发挥了基于数据驱动的模型训练策略,在保持第一性原理计算精度的同时,可以实现百万原子的分子模拟,具有广阔的应用潜力。提出未来含能材料机器学习势函数的开发将面临如下挑战:(1)如何对极端条件下复杂反应势面进行充分采样;(2)如何提高机器学习势训练集的精度。附参考文献91篇。A comprehensive review was conducted on the historical development,construction scheme,and training strategy of the machine learning potential.This novel technique approximates the potential energy surface of molecular system at the level of first-principle calculations and has been successfully applied in the molecular modelling of combustion and explosion for energetic materials,including nitramine compounds(RDX,CL-20,and ICM-102),oxidizers(AP)and high-energy particles(Al,B).In addition,the representative applications of machine learning potential on the combustion of hydrocarbon fuels were also introduced.Furthermore,the challenges and future development perspectives of machine learning potential in energetic materials were discussed.It is well demonstrated that machine learning potentials,particularly deep potential models,are highly accurate and efficient.The data-driven approach makes it feasible to empower the simulation of million atoms with a great accuracy as first-principle calculations.In the final remark,the key challenges for the further development of machine learning potentials are discussed:(1)sampling issue for a complex potential energy surface under extreme conditions;(2)accuracy problem in the training dataset.With 91 references.
关 键 词:含能材料 机器学习势 第一性原理 燃烧 分子动力学 深度势模型
分 类 号:TJ55[兵器科学与技术—军事化学与烟火技术] TQ564[化学工程—炸药化工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7