基于深度神经网络的大气湍流压缩波前探测  

Compressed wavefront sensing based on deep neural network for atmospheric turbulence

在线阅读下载全文

作  者:华晟骁 胡启立 冯佳濠 姜律 杨燕燕 吴晶晶 俞琳 胡立发[1,3] HUA Sheng-xiao;HU Qi-li;FENG Jia-hao;JIANG Lü;YANG Yan-yan;WU Jing-jing;YU Lin;HU Li-fa(School of Science,Jiangnan University,Wuxi 214122,China;Key Laboratory of Electro-Optical Countermeasures Test&Evaluation Technology,Luoyang 471003,China;Jiangsu Provincial Research Center of Light Industry Opto-Electronic Engineering and Technology,Wuxi 214122,China)

机构地区:[1]江南大学理学院,江苏无锡214122 [2]光电对抗测试与评估技术重点实验室,河南洛阳471003 [3]江苏省轻工光电工程技术研究中心,江苏无锡214122

出  处:《液晶与显示》2023年第6期789-797,共9页Chinese Journal of Liquid Crystals and Displays

基  金:国家自然科学基金(No.61475152);光电对抗测试与评估技术重点实验室基金(No.GKCP2021001)。

摘  要:压缩感知技术用于光学波前测量时,常规的斜率恢复方法精度较低,难以测量大气湍流引起的复杂波前,本文利用深度神经网络进行斜率恢复,提高斜率恢复精度,从而提高压缩波前探测方法测量大气湍流波前的精度。传统的压缩波前探测方法在稀疏化过程中忽略相对较小的斜率值,导致波前测量误差的增加。为了快速测量大气湍流引起的复杂波前,本文提出了一种深度神经网络,可以高精度地恢复斜率,从而提高了波前重构的精度。在压缩比为0.1~0.9情况下,基于深度神经网络的压缩波前探测算法(DNNCWS)的波前重构误差PV优于0.014μm,算法的运行时间为4.4 ms。在暗弱星等情况下,残差波前的峰谷值(PV)优于0.011μm。模拟结果表明,DNNCWS具有良好的抗噪声性能。深度神经网络DNNCWS提高了压缩波前的探测精度,可以用于测量大气湍流引起的复杂像差,还可用于其他自适应光学应用,如激光通信和视网膜成像。When the compressive sensoring is used in wavefront measurement,classic methods of slopes’restoration has a relatively low precision,which make it difficult to measure the atmospheric turbulence wavefront.In the paper,a deep neural network is presented to improve the slopes’restoration precision.The traditional compressive sensing technology does not take into account the relatively small slopes,which increases the wavefront measurement errors.To measure the complex wavefront induced by atmospheric turbulence with a high speed,the paper presents an improved deep neural network to restore the slopes from sparse ones with high precision,which improves the precision of wavefront reconstruction.When the compression ratio is ranged from 0.1 to 0.9,the wavefront error PV(Peak to valley)of the compressed wavefront detection algorithm based on depth neural network(DNNCWS)proposed in this paper is better than 0.014μm,and the running time of the algorithm is 4.4 ms.In the case of low signal-to-noise ratio,the residual wavefront PV is better than 0.011μm.In addition,the simulation results indicate that it has good anti-noise performance.The DNNCWS improves the detection accuracy of compressive sensing and overcomes the problem of low accuracy for complex aberration induced by atmospheric turbulence.It can also be used in other adaptive optical applications,such as laser communication and retinal imaging.

关 键 词:压缩波前探测 自适应光学 大气湍流 

分 类 号:O439[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象