检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王俊奇[1] 汪志刚 WANG Junqi;WANG Zhigang(School of Water Resources and Hydropower Engineering,North China Electric Power University,Beijing 102206,China)
机构地区:[1]华北电力大学水利与水电工程学院,北京102206
出 处:《水利学报》2023年第5期575-586,共12页Journal of Hydraulic Engineering
基 金:国家自然科学基金项目(51579100);水资源与水电工程科学国家重点实验室开放基金项目(2016SGG03)。
摘 要:裂隙岩体的渗透张量确定一直是渗流领域研究的重点。本文基于广义达西定律,提出一种新型空间一维环单元模型来计算三维裂隙岩体的渗透张量,该模型简化了以往复杂的三维面状流模型。通过解析法和数值模拟法对一维环单元模型的合理性进行验证,并利用面单元模型校核该模型的精度。结果表明:对于同一裂隙岩体,环单元模型计算得到的渗透张量,与现场压水试验校核过的数据相比,误差在合理范围之内,与面单元模型计算得到的结果相比,基本相同;环单元模型是一种可行、精度高且实用的简化模型,比面状流模型简单,在计算渗透张量时能极大地减小运算规模,优化了算法。研究成果可为确定裂隙岩体的渗透张量提供新思路。The determination of the permeability tensor of fractured rock masses has been the focus of research in the field of seepage.In this paper,based on the generalized Darcy’s law,a new spatial one-dimensional ring unit model is proposed to calculate the permeability tensor of three-dimensional fractured rock masses,which simplifies the previous complex three-dimensional surface flow model.The rationality of the one-dimensional ring unit model is verified by analytical and numerical simulation methods,and the accuracy of the model is checked by using the surface unit model.The results show that:for the same fractured rock masses,the permeability tensor calculated by the ring unit model is within a reasonable error range compared with the data verified by the field piezometric test,and is basically the same as that calculated by the surface unit model;the ring unit model is a feasible,accurate and practical simplified model,which is simpler than the surface flow model and can greatly reduce the operation scale and optimize the algorithm when calculating the permeability tensor.This research can provide new ideas for determining the permeability tensor of fractured rock masses.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7