检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郄航 窦勇 黄震 熊运生 Hang Qie;Yong Dou;Zhen Huang;Yun-Sheng Xiong(Science and Technology on Parallel and Distributed Laboratory,School of Computer National University of Defense Technology,Changsha 410073,China)
出 处:《Journal of Computer Science & Technology》2023年第2期373-390,共18页计算机科学技术学报(英文版)
基 金:supported by the Key Program of National Natural Science Foundation of China under Grant No.61732018;the National Natural Science Foundation of China under Grant No.61902415;the Open Foundation of Science and Technology on Parallel and Distributed Laboratory(School of Computer,National University of Defense Technology)under Grant No.6142110190201.
摘 要:Community detection is a vital task in many fields,such as social networks and financial analysis,to name a few.The Louvain method,the main workhorse of community detection,is a popular heuristic method.To apply it to large-scale graph networks,researchers have proposed several parallel Louvain methods(PLMs),which suffer from two challenges:the latency in the information synchronization,and the community swap.To tackle these two challenges,we propose an isolate sets based parallel Louvain method(IPLM)and a fusion IPLM with the hashtables based Louvain method(FIPLM),which are based on a novel graph partition algorithm.Our graph partition algorithm divides the graph network into subgraphs called isolate sets,in which the vertices are relatively decoupled from others.We first describe the concepts and properties of the isolate set.Second we propose an algorithm to divide the graph network into isolate sets,which enjoys the same computation complexity as the breadth-first search.Third,we propose IPLM,which can efficiently calculate and update vertices information in parallel without latency or community swap.Finally,we achieve further acceleration by FIPLM,which maintains a high quality of community detection with a faster speedup than IPLM.Our two methods are for shared-memory architecture,and we implement our methods on an 8-core PC;the experiments show that IPLM achieves a maximum speedup of 4.62x and outputs higher modularity(maximum 4.76%)than the serial Louvain method on 14 of 18 datasets.Moreover,FIPLM achieves a maximum speedup of 7.26x.
关 键 词:parallel computing isolate set graph partition Louvain method community detection
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.192.109